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A B S T R A C T

Type information is useful for developing large-scale software systems.
Types help prevent bugs, but may be inflexible and hamper quick iteration
on early prototypes. TypeScript, a syntactic superset of JavaScript, brings
the best of both worlds, allowing programmers to freely mix statically
and dynamically typed code, and choose the level of type safety they
wish to opt into. However, type migration, the process of migrating an
untyped program to a typed version, has remained a labour-intensive
manual effort in practice. As a first step towards automated effective type
migration, there has been interest in applying machine learning to the
narrower problem of type prediction.

In this dissertation, I propose to use machine learning to partially mi-
grate JavaScript programs to TypeScript, by predicting type annotations and
generating type definitions. To support this thesis, I make three contributions.
First, I propose evaluating type prediction by type checking the generated
annotations instead of computing accuracy. Second, I fine-tune a large
language model (LLM) with fill in the middle (FIM) capability to fill in
the type and predict type annotations. Finally, I use a similar approach to
fine-tune a large language model to generate missing type definitions.
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1
I N T R O D U C T I O N

Type information is useful for developing large-scale software. Types help
prevent bugs, provide documentation, and improve support for editors
and development tools. Furthermore, a static type checker can identify
type errors at compile time, early in the development cycle, rather than
much later at run time. On the other hand, types can be inflexible and may
hamper quick iteration on early prototypes.

Gradual typing brings the best of both worlds, allowing programmers to
freely mix typed and untyped code and choose the level of type safety they
wish to opt into [Guha et al., 2011; Siek and Taha, 2006; Tobin-Hochstadt
and Felleisen, 2008; Tobin-Hochstadt, Felleisen, et al., 2017]. This makes it
possible to prototype with untyped code, and then incrementally add static
types to an existing codebase without requiring a complete rewrite at once.
As a result, gradual typing has proliferated over the past decade, and there
are now gradually typed versions of several mainstream programming
languages [Bierman et al., 2014; Bonnaire-Sergeant et al., 2016; Cassola
et al., 2020; Chaudhuri et al., 2017; Lu et al., 2022; Meta Platforms, Inc.,
2019; Ottoni, 2018; Tobin-Hochstadt and Felleisen, 2008; Rossum et al.,
2014; Zimmerman, 2022].

typescript. One success story is TypeScript, a widely used gradually
typed language that extends JavaScript syntax with optional type annota-
tions [Bierman et al., 2014]. Both TypeScript and JavaScript are immensely
popular: JavaScript is the most popular programming language on GitHub,
while TypeScript has risen from eighth in 2017 to third in 2023 [GitHub,
Inc., 2023]. JavaScript is also the most popular language on Stack Over-
flow, while TypeScript is fifth [Stack Overflow, 2023]. Programmers can
write their code in TypeScript (assigning or omitting type annotations as
desired), benefit from static type checking, and then compile to JavaScript.
However, type migration, the process of migrating an untyped JavaScript
program to TypeScript, has remained a labour-intensive manual effort
in practice: programmers must tediously annotate their programs with
types, and code may even need to be rewritten in some cases. For example,
Airbnb engineers took more than two years to migrate 6 million lines
of JavaScript [Rudenko, 2020], and there are several other accounts of
multi-year JavaScript-to-TypeScript migration efforts [Autry, 2019; Burgess
et al., 2022; Moore, 2019; Parparita, 2020; Rieseberg, 2017].

1



2 introduction

constraint-based type inference . One approach to automate
type migration is constraint-based type inference. Anderson et al. [2005]
presented the first type inference algorithm for JavaScript, but only for
a fragment of the language. Other, more recent approaches are similarly
limited to fragments or dialects of JavaScript, or are used for performance
optimizations rather than type migration [Hackett and S.-y. Guo, 2012;
Rastogi, Chaudhuri, et al., 2012; Chandra et al., 2016].

There are also type inference tools that generate type annotations and
type definitions, but not TypeScript code [Naus, 2015; Kahlert, 2018]. For
example, the TypeScript compiler can be configured to generate interface
declaration (.d.ts) files.1 These files provide type annotations for exported
functions, but do not actually insert type annotations into the original
JavaScript code. Instead, the purpose of these type declaration files is to
allow JavaScript packages to be imported into TypeScript projects. While
this is useful as an intermediate migration step, it is not an end-to-end
solution for JavaScript-to-TypeScript type migration.

type prediction. An alternative approach towards effective auto-
mated type migration is to use machine learning techniques to attack the
narrower problem of type prediction. Compared to type migration, which
may involve refactoring code that is not well typed, type prediction is
concerned only with predicting the most likely type annotations for a
given code fragment [Allamanis et al., 2020; Cassano, Yee, et al., 2023b;
Hellendoorn et al., 2018; Jesse, Devanbu, and Ahmed, 2021; Jesse, Devanbu,
and Sawant, 2022; Malik et al., 2019; Mir, Latoškinas, Proksch, et al., 2022;
Pandi et al., 2021; Peng, Gao, et al., 2022; Peng, Wang, et al., 2023; Pradel
et al., 2020; Wei et al., 2020b; Z. Xu et al., 2016; Yee and Guha, 2023a].

Type prediction is appealing because machine learning models can take
into account the linguistic context of the code fragment, such as comments
and identifier names, while traditional, constraint-based approaches have
difficulty accommodating language features such as eval. Furthermore,
there is a significant quantity of high-quality, open-source JavaScript and
TypeScript code that is available to serve as training data [Husain et al.,
2020; Jesse and Devanbu, 2022; Kocetkov et al., 2022; Mir, Latoškinas, and
Gousios, 2021; F. F. Xu et al., 2022]. In particular, large language mod-
els (LLMs) have been successful in a variety of code generation tasks [Athi-
waratkun et al., 2023; Austin et al., 2021; Ben Allal et al., 2023; Cassano,
Gouwar, et al., 2023; Chen et al., 2021; Christopoulou et al., 2022; Izadi
et al., 2022; Nijkamp et al., 2023; F. F. Xu et al., 2022].

However, there are limitations in the existing literature:

1 The compiler flags are --declaration --allowJs



1.1 thesis and contributions 3

• Machine learning models for type prediction are typically evaluated
on accuracy, which is the proportion of type predictions that are
correct. However, calculating accuracy requires a ground truth of
existing type annotations, which is not available when migrating Java-
Script code, and accuracy says nothing about whether the migrated
code will type check.

• LLMs have neither been trained for nor evaluated on the type pre-
diction task, other than small-scale evaluations [Fried et al., 2023; Li
et al., 2023a].

• The related problem of type definition generation has not been studied.
This is particularly relevant when migrating JavaScript to TypeScript,
as TypeScript has a structural type system and the migrated code
may refer to types that need to be defined.

I address these limitations in my thesis.

1.1 thesis and contributions

This dissertation focuses on how machine learning can be used to migrate
JavaScript programs to TypeScript. However, the scope of that problem
is too large for a single dissertation, so I focus on the narrower problem
of type annotation prediction and type definition generation, and leave
refactoring for future work. Therefore, my thesis is:

Machine learning can be used to partially migrate JavaScript pro-
grams to TypeScript, by predicting type annotations and generating
type definitions.

To elaborate on my thesis statement, my work uses machine learning
models, specifically LLMs, and in particular, open such as SantaCoder [Ben
Allal et al., 2023] and StarCoder [Li et al., 2023a]. I focus on a partial
migration, acknowledging that some manual refactoring may be required,
and I restrict my work to JavaScript and TypeScript. I do not believe a
fully automated migration is currently possible, especially when handling
popular programming languages with challenges not present in smaller
languages like the gradually typed lambda calculus and its extensions.
Finally, I study the specific tasks of type annotation prediction and type
definition generation, which are part of type migration.

To support my thesis, I make three contributions:

1. I propose evaluating type prediction systems by type checking the
generated types, rather than using the typical metric of accuracy. As



4 introduction

part of this work, I present an evaluation dataset and TypeWeaver, a
system for evaluating type prediction systems.

I discuss this work in Chapter 3, which is based on the ECOOP 2023

paper “Do Machine Learning Models Produce TypeScript Types That
Type Check?” [Yee and Guha, 2023a].

2. Because LLMs have not been extensively evaluated for the type pre-
diction task, I created an evaluation dataset and worked on a new
fine-tuning approach called fill in the type (FIT) for type prediction.

I discuss this work in Chapter 4, which is based on the preprint
Type Prediction With Program Decomposition and Fill-in-the-Type Train-
ing [Cassano, Yee, et al., 2023b].

3. Finally, taking lessons from the previous two contributions, I train
and evaluate StenoType, an LLM that generates type definitions for
TypeScript, in addition to predicting type annotations for untyped
JavaScript programs.

I discuss this work in Chapter 5.

The remaining chapters of my dissertation cover background material
(Chapter 2), overall discussion (Chapter 6), related work (Chapter 7),
future work (Chapter 8), and conclusions (Chapter 9).



2
B A C K G R O U N D

In this chapter, I provide background information on type migration, con-
trasting it to type inference, as well as machine learning techniques for
type migration, such as large language models (LLMs) and fill in the mid-
dle (FIM) inference.

2.1 type migration

I use the term type migration to describe the problem of migrating a
program from an untyped language to a typed language, e. g., from Java-
Script to TypeScript. This process mainly involves adding type annotations
to untyped code, but also has additional challenges. For example, multiple
types may be valid for a program, the inserted type annotations may refer
to types that need to be defined, a program can be trivially migrated
with unhelpful type annotations, new errors can be introduced by type
annotations, and dynamic features like eval cannot easily be handled
without escape hatches.

In contrast, type inference, or type reconstruction is a narrower problem,
where the goal is to compute the types of expressions and functions when
some or all of the type annotations are missing [Pierce, 2002, ch. 22].
Furthermore, type inference typically requires a statically typed language
with implicit type information in the program, and the type inference
algorithm computes the missing type annotations. As a result, the inferred
type annotations refer to well-defined type definitions that already exist,
so there is no need to add new type definitions. Additionally, inference can
frequently compute principal types, i. e., the most general types, meaning
there is a single correct type annotation for a given expression. These
properties make type inference a more straightforward problem to solve
than general type migration.

The following examples illustrate some of the challenges encountered
when migrating JavaScript programs to TypeScript.

Multiple types for a program

TypeScript does not have principal types, so a program may have multiple
valid types. For example, in the following program, the parameter x could

5



6 background

be annotated as either number or string, as x + x could either be addition
or string concatenation:

1 function f(x) { return x + x; }

2 f(1); // returns 2

3 f("a"); // returns "aa"

Furthermore, since f is called with both numeric and string arguments,
the only valid type annotation for x is any.1

The actual culprit in this example is that + is overloaded to mean
both addition and string concatenation. However, it is also possible to
encounter the same problem of multiple valid type annotations, even
without operator overloading. Consider the following program, which
adapts an example from Migeed and Palsberg [2020, sec. 2.3]:

4 function id1(x) { return x; }

5 function id2(y) { return y; }

6 id2(id1(true)) * 2;

This program defines two identity functions, id1 and id2. It calls id1 with
the argument true, and then passes that result to id2. Finally, the result is
multiplied by 2. There are three valid migrations for this program:

7 // Migration 1

8 function id1(x: any) { return x; }

9 function id2(y: any) { return y; }

10 id2(id1(true)) * 2;

11

12 // Migration 2

13 function id1(x: any) { return x; }

14 function id2(y: number) { return y; }

15 id2(id1(true)) * 2;

16

17 // Migration 3

18 function id1(x: boolean) { return x; }

19 function id2(y: any) { return y; }

20 id2(id1(true)) * 2;

In other words, there are multiple valid type annotations for the original
program, but none of them is the best: at least one of the annotations must
be any.

Types need to be defined

Type inference reconstructs missing type annotations that refer to existing
type definitions in the program. However, this is not the case with type

1 The union type number | string produces a type error in the function.
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migration, where type definitions do not already exist. Consider the fol-
lowing example, which initializes point to an empty object and then sets
its x and y properties:2

21 let point = {}

22 point.x = 42;

23 point.y = 54;

A possible type annotation for point is {x?: number, y?: number},
because point is initialized as an empty object, so its x and y properties
must be optional. Adding the type annotation results in the following
program:

24 let point: {x?: number, y?: number} = {}

25 point.x = 42;

26 point.y = 54;

TypeScript has a structural type system [Bierman et al., 2014], mean-
ing type annotations can become verbose and difficult to read, or even
impossible to write in the case of recursive types. To avoid this situation,
the programmer can write explicit type definitions, but now the type
migration involves adding type definitions as well as type annotations:

27 interface Point { x?: number, y?: number };

28 let point: Point = {}

29 point.x = 42;

30 point.y = 54;

A more idiomatic solution would be to refactor the code as follows, by
defining a class and constructor, and making x and y required:

31 class Point {

32 x: number;

33 y: number;

34 constructor(x: number, y: number) {

35 this.x = x;

36 this.y = y;

37 }

38 }

39 let point: Point = new Point(42, 54);

Trivial type annotations

The type annotation any will always pass the type checker, but is imprecise
and provides little benefit to the programmer. For example, the following
program type checks, but is no better than an untyped program:

2 Prior to the introduction of classes in ECMAScript 6, this was a common JavaScript idiom.
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40 function sumThree(x: any, y: any, z: any) {

41 return x + y + z;

42 }

The use of any can also lead to unintuitive behaviours. For example, in
the following program, a programmer might expect g to have the same
type as f, and therefore reject the string argument "hi":

43 function f(x: number) { return x + 1; }

44 function id(y: any) { return y; }

45 let g = id(f);

46 g("hi") // returns "hi1"

However, the code type checks and the + operator in f is treated as
string concatenation instead of addition, despite both of its arguments
having the type number. This is because of type erasure: the TypeScript
compiler erases types when emitting JavaScript, so there is no run-time
type representation or run-time type checking [Bierman et al., 2014].3

Adding types can introduce new errors

An untyped program may be valid with no run-time errors, but adding
type annotations can introduce new static errors. For example, consider
the following program, which is adapted from Phipps-Costin et al. [2021,
Fig. 2]:

47 function f(x) {

48 if (false) {

49 let y = x + 10;

50 x();

51 } else {

52 x();

53 }

54 }

In this program, the function f branches on the literal false, meaning
the path where x is used as both a number and a function is unreachable.
Thus, no run-time error can occur when calling this function. However,
annotating x as (number) => number or number causes the program to fail
to type check. In other words, this valid program is now ruled out by the
type checker.

3 Chung et al. [2018] describes this as the optional approach to gradual typing, while
Greenman and Felleisen [2018] calls it the erasure approach.
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58 function f( x ) {

59 return x + 1;

60 }

Type of x Probability

number 0.4221

any 0.2611

string 0.2558

other

Figure 2.1: An example of using a classification approach for type prediction. The
function on the left is given as input, the model predicts types for x,
and the predictions are shown in the table on the right.

Dynamic language features

Dynamic features like eval cannot be easily handled without escape
hatches, such as any:

55 function f(s: string): any {

56 return eval(s);

57 }

In the example above, eval takes an arbitrary string argument and executes
it, meaning the return type of f cannot be determined at compile time.
Therefore, the only type annotation that captures all potential behaviours
is any.

Summary

These examples highlight some of the challenges that arise from JavaScript
to TypeScript type migration, and show that it is a more difficult problem
than type inference. Ultimately, type migration is a refactoring problem.

2.2 machine learning for type prediction

Because of the numerous challenges of type migration, recent work has fo-
cused on the narrower problem of assigning type annotations to TypeScript
code, in particular, using machine learning approaches. Machine learning
is an appealing choice for the type annotation prediction task, because of the
availability of high-quality training data, such as ManyTypes4TS [Jesse
and Devanbu, 2022] and The Stack [Kocetkov et al., 2022]. This has led to a
proliferation of machine learning models that can roughly be categorized
into two approaches: classification approaches and code LLM approaches.

Classification approaches are an older approach where a model is
trained specifically for type prediction: given a code fragment, for each
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61 function f(x: _hole_ ) {

62 return x + 1;

63 }

64 function f(x: number ) {

65 return x + 1;

66 }

Figure 2.2: An example of using a FIM approach for type prediction. The function
on the left contains a hole and is given as input, and the LLM fills in
the type annotation number.

identifier, the model produces a probability distribution of the most likely
type annotations. For example, in Figure 2.1, the code on the left is given
as input to a model, which predicts types for the highlighted parameter
x. The predictions are shown in the table on the right, where number is
the most likely type annotation, followed by any. In other words, each
identifier is assigned a list of likely type annotations and their probabilities.
In an interactive setting, a user could examine the predicted type anno-
tations and choose the best one, while in an automated setting, the most
likely annotation is taken. Some examples of classification approaches for
TypeScript type prediction include DeepTyper [Hellendoorn et al., 2018]
and LambdaNet [Wei et al., 2020b], which are discussed in Sections 3.1.1
and 3.1.2.

Today, most approaches use code LLMs, also known as large language
models for code. These models are trained on vast amounts of data for
general-purpose code generation: given a code fragment, they predict
what code comes next.4 Additionally, some models support fill in the
middle (FIM) inference, which allows code generation to occur at arbitrary
locations, i. e., holes that the user inserts into the code, rather than at the
end. Figure 2.2 shows a function on the left, where a hole has been inserted
at the type annotation site. The LLM generates code at the hole, condi-
tioned on the surrounding context, and the result is the function on the
right, with number as the type annotation. LLMs that support FIM include
Codex [Bavarian et al., 2022], InCoder [Fried et al., 2023], SantaCoder [Ben
Allal et al., 2023], StarCoder [Li et al., 2023a], Code Llama [Rozière et al.,
2023], and DeepSeekCoder [D. Guo et al., 2024].

2.2.1 Large Language Models

Large language models (LLMs) were originally trained for generating
natural language text. For example, given a prompt, i. e. a fragment of text

4 Technically, LLMs are instances of classification approaches: predicting the next code token
is a classification problem where the categories are all the tokens in the vocabulary. In this
dissertation, it is convenient to contrast general-purpose code LLMs with older models that
are only trained for type prediction, which assign type annotation labels to identifiers in
code.
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The ␣quick ␣br own

␣fox

␣dog

␣car

␣jumped

␣chased

0.7

0.2

0.1

0.9

0.1

Figure 2.3: An example of an LLM generating text.

as input, the model predicts the text that follows. The model operates on
tokens, which are small units of text that may include non-word characters
like whitespace and punctuation, and may also be smaller than individual
words. For example, the prompt The quick brown could be tokenized
into four tokens: The quick br own . When given to a model, the model
predicts the most likely token to follow. For example, Figure 2.3 shows
the prompt on the left and three possible tokens that could follow: fox

with a probability of 0.7, dog with a probability of 0.2, and car with
a probability of 0.1. If fox is selected, it is appended to the input to
create a new prompt, The quick br own fox , and subsequent tokens
are generated from this input, for example jumped or chased . The
process repeats until a fixed number of tokens is generated, or one of the
special predefined “stop” tokens is generated. In this example, the most
likely token was selected at each step, but there are a variety of different
strategies, and in practice, some form of sampling is used, so the results
will be non-deterministic.

LLMs are typically implemented as neural networks. While the details
are not necessary for understanding this dissertation, the general idea is
that a neural network is a graph of nodes and edges, where each node
represents a weight and a bias, collectively called parameters. Parameters
are the values that affect the output of a model, and are adjusted during
training. In general, the more parameters a model has, the more powerful
and capable it is, at the cost of requiring more resources to train and use.
A language model is considered large when it has millions or billions of
parameters. For example, GPT-3 has roughly 175 billion parameters and
was trained on 570 GB of data [Brown et al., 2020].

A code LLM is similar to a natural language LLM, but trained on code
examples. Some models are trained directly on code, while others are
based on prior natural language LLMs. For example, the Codex model was
produced by fine-tuning GPT-3 on code, and is now used to provide code
suggestions for the GitHub Copilot service [Chen et al., 2021]. However,
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Table 2.1: The StarCoder family of models, and the resources required to store
and run inference with them.

Parameters Disk space GPU memory

1 B 4.3 GB 4 GB

3 B 11.5 GB 8 GB

7 B 28.0 GB 17 GB

15 B 60.0 GB 34 GB

GPT-3 and Codex are proprietary, so the model architectures, parameters,
and training data are not public. As a result, there has been interest in
creating “open” code LLMs, where the parameters and training data are
openly available. These include SantaCoder [Ben Allal et al., 2023] and its
successor, StarCoder [Li et al., 2023a].

The full StarCoder model has 15 billion parameters, which requires
about 60 GB of disk for storage and a data centre GPU to run inference,
such as the NVIDIA A100 80GB or NVIDIA H100. Alternatively, there
are smaller versions of StarCoder available: StarCoder-1B, StarCoder-3B,
and StarCoder-7B, with 1, 3, and 7 billion parameters, respectively. For
comparison, StarCoder-1B and StarCoder-3B are small enough to run on
consumer hardware. Table 2.1 lists the StarCoder family of models and
the resources required to use them.

2.2.2 Fill in the Middle

Traditional LLMs perform left-to-right generation, where text or code is gen-
erated at the end of the input prompt. However, some models support fill
in the middle (FIM), where generation occurs at arbitrary locations within
the prompt. This style of generation is a natural fit for type prediction,
since the predicted type annotation depends on the surrounding context.
For example, suppose we would like to type annotate the parameter x of
the given code fragment:

67 function f(x) {

68 return x + 1;

69 }

Conceptually, we insert a special token, representing a hole, at the loca-
tion where a type annotation should be generated:

70 function f(x: _hole_ ) {

71 return x + 1;

72 }
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The model then uses the surrounding code context to predict the type
annotation:

73 function f(x: number ) {

74 return x + 1;

75 }

training . The FIM training process uses a special format that ensures
the model can generate code in the middle of a program, conditioned
on the surrounding context, while preserving its ability for left-to-right
code generation [Bavarian et al., 2022; Fried et al., 2023]. For example,
suppose we wish to transform the following factorial function into a
training example, where the model learns to generate the highlighted line
of code:

76 function fact(n) {

77 if (n == 0) return 1;

78 return n * fact(n - 1);

79 }

We insert special training tokens that denote the prefix, middle, and suffix
spans of code:

80 ⟨fim_prefix⟩ function fact(n) {

81 ⟨fim_middle⟩ if (n == 0) return 1;

82 ⟨fim_suffix⟩ return n * fact(n - 1);

83 }

Then, we move the middle code span to the very end:

84 ⟨fim_prefix⟩ function fact(n) {

85 ⟨fim_suffix⟩ return n * fact(n - 1);

86 } ⟨fim_middle⟩ if (n == 0) return 1;

This transforms the original surrounding context into a single prefix:
in other words, FIM inference has been transformed into a left-to-right
generation problem. More generally, the training procedure randomly
selects one or more non-overlapping, contiguous middle spans from the
training data, applies the FIM transformation, and then trains as a left-to-
right language model.

inference . Once trained, inference uses the same format and special
tokens to generate text. Returning to our previous example, we would like
the model to replace _hole_ with a type annotation:

87 function f(x: _hole_ ) {

88 return x + 1;

89 }
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We insert the special prefix, suffix, and middle tokens, and rearrange the
text so that the middle token is at the end:

90 ⟨fim_prefix⟩ function f(x: ⟨fim_suffix⟩ ) {

91 return x + 1;

92 } ⟨fim_middle⟩

The model generates text at the very end, after the special middle token:

93 ⟨fim_prefix⟩ function f(x: ⟨fim_suffix⟩ ) {

94 return x + 1;

95 } ⟨fim_middle⟩ number

To get the final result, we extract the code after the special middle token
and reverse the transformation:

96 function f(x: number ) {

97 return x + 1;

98 }



3
E VA L UAT I N G T Y P E P R E D I C T I O N M O D E L S

Over the last few years, advances in model architectures and high-quality
training data have led to type annotation prediction with high accuracy
on individual type annotations [Hellendoorn et al., 2018; Jesse, Devanbu,
and Sawant, 2022; Jesse, Devanbu, and Ahmed, 2021; Pandi et al., 2021;
Wei et al., 2020b]. However, in this chapter, I argue that accuracy can be
misleading, and that predicting individual type annotations is just the
first step of migrating a codebase from JavaScript to TypeScript. Instead,
evaluation should ask a different question: can an automatic type migration
tool produce code that type checks? If so, type annotations should be non-
trivial and useful (i. e., annotations that are not just any). On the other
hand, if the code does not type check, it may have too many errors, which
can overwhelm a user who may just turn off the tool. Moreover, it may not
be feasible to fix the type errors automatically, since type errors refer to
code locations whose typed terms are used, and not necessarily to faulty
annotations.

To answer the type checking question, I present TypeWeaver, a Type-
Script type migration tool that can be used with an arbitrary type predic-
tion model.1 In this chapter, I evaluate four models from the literature:
DeepTyper [Hellendoorn et al., 2018], a recurrent neural network; Lambda-
Net [Wei et al., 2020b], a graph neural network; and InCoder [Fried et al.,
2023] and StarCoder [Li et al., 2023a], two LLMs that support FIM, which I
discussed in Section 2.2.2.

TypeWeaver automates several steps that are necessary for using a type
prediction model, including:

importing type dependencies Before migrating a JavaScript project,
its dependencies must be typed. This means transitively migrating
dependencies, or ensuring that the dependencies have TypeScript
interface declaration (.d.ts) files available.

module conversion JavaScript code written for Node.js may use ei-
ther the CommonJS or ECMAScript module system. However, when
migrated to TypeScript, only ECMAScript modules preserve type
information. Thus, to fully benefit from static type checking, code
written with CommonJS modules should be refactored to use ECMA-
Script modules.

1 This work was published as Yee and Guha [2023a] and is available as an artifact [Yee and
Guha, 2023b]

15
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type weaving Models that assign type labels to variables do not update
the JavaScript source to include type annotations. Therefore, to type
check a program, the predicted type annotations must be “woven”
into the original JavaScript source to produce TypeScript.

rejecting non-type predictions Models that predict type annota-
tions as in-filled sequences of tokens can easily produce token se-
quences that are not syntactic types. These predictions need to be
rejected or cleaned for type prediction to work.

After completing these tasks, it is then possible to type check the resulting
TypeScript program and evaluate the effectiveness of TypeWeaver.

3.1 type prediction models and accuracy

In this section, I provide some background on the four type prediction
models that I evaluate: DeepTyper [Hellendoorn et al., 2018], Lambda-
Net [Wei et al., 2020b], InCoder [Fried et al., 2023], and StarCoder [Li et al.,
2023a]. I also describe their training and evaluation datasets.

DeepTyper was the first deep neural network for TypeScript type predic-
tion, and uses a bidirectional recurrent neural network architecture. Lambda-
Net was another early approach, and it uses a graph neural network archi-
tecture. InCoder and StarCoder are recent LLMs that predict arbitrary code
completions, and while not trained specifically to predict type annotations,
their support for FIM make them ideal for that task. All four models use
training data from public code repositories.

TypeWeaver requires a system that takes a JavaScript project as input
and outputs a type-annotated TypeScript project. DeepTyper and Lambda-
Net output a probability distribution of types for each identifier, which
must be then “woven” into the original JavaScript source to produce Type-
Script; I describe this technique in Section 3.2.3. InCoder and StarCoder
are LLMs, which require a front end to predict type annotations and output
TypeScript. The front end only supports type predictions for function
parameters, and its implementation is described in Section 3.2.2.1.

My approach can be adapted to work with any type prediction model.
Older models may require some work to adapt their outputs, but the In-
Coder front end has been easily extended to support other fill-in-the-type
models, such as SantaCoder [Ben Allal et al., 2023] and StarCoder [Li et al.,
2023a].

3.1.1 DeepTyper

DeepTyper [Hellendoorn et al., 2018] predicts types for variables, function
parameters, and function results using a fixed vocabulary of types, i. e., it
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cannot predict types declared by the program under analysis unless those
types were observed during training. DeepTyper treats type inference as
a machine translation problem from one language (unannotated Type-
Script) to another (annotated TypeScript). Specifically, it uses a model
based on a bidirectional recurrent neural network architecture to translate a
sequence of tokens into a sequence of types: for each identifier in the source
program, DeepTyper returns a probability distribution of predicted types.
Because the input token sequence is perfectly aligned with the output
type sequence, this task can also be considered a sequence annotation task,
where an output type is expected for every input token.2 However, this
approach treats each input token as independent from the others, i. e., a
source variable may be referenced multiple times and each occurrence
may have a different type. To mitigate this, DeepTyper adds a consistency
layer to the neural network, which encourages—but cannot enforce—the
model to treat multiple occurrences of the same identifier as related.

DeepTyper’s dataset is based on the top 1,000 most starred TypeScript
projects on GitHub, as of February 2018. After cleaning to remove large
files (those with more than 5,000 tokens) and projects that contained
only TypeScript declaration files, the dataset was left with 776 TypeScript
projects (containing about 62,000 files and about 24 million tokens), which
were randomly split into 80% (620 projects) training data, 10% (78 projects)
validation data, and 10% (78 projects) test data. Further processing and
cleaning of rare tokens resulted in a final vocabulary of 40,195 source
tokens and 11,830 types.

The final training dataset contains both identifiers and types, where
each identifier has an associated type annotation; this includes annotations
inferred by the TypeScript compiler that were not manually annotated
by a programmer. The testing dataset contains type annotations and no
identifiers; specifically, the type annotations added by programmers are
associated with their declaration sites, and all other sites are associated
with “no-type.” As a result, DeepTyper’s predictions are evaluated against
the handwritten type annotations, rather than all types in a project.

3.1.2 LambdaNet

Like DeepTyper, LambdaNet [Wei et al., 2020b] predicts type annota-
tions for variables, function parameters, and function returns: it takes an
unannotated TypeScript program and outputs a probability distribution
of predicted types for each declaration site. LambdaNet improves upon
two limitations of DeepTyper. First, it predicts from an open vocabulary,

2 The DeepTyper architecture must classify every input token, including ones where an
output type does not make sense, such as if, (, ), and even whitespace. DeepTyper filters
out these predictions, so a user will never observe these meaningless types.
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beyond the types that were observed during training; i. e., it can predict
user-defined types from within a project. Second, it only produces type
predictions at declaration sites, rather than at every variable occurrence;
in other words, multiple uses of the same variable will have a consistent
type.

LambdaNet uses a graph neural network architecture and represents a
source program as a so-called type dependency graph, which is computed
from an intermediate representation of TypeScript that names each subex-
pression. The type dependency graph is a hypergraph that encodes pro-
gram type variables as nodes, and relationships between those variables
as labeled edges. By encoding type variables, LambdaNet makes a single
prediction over all occurrences of a variable, rather than a prediction for
each instance of a variable. Furthermore, the edges encode logical con-
straints and contextual hints. Logical constraints include subtyping and
assignment relations, functions and calls, objects, and field accesses, while
contextual hints include variable names and usages. Finally, LambdaNet
uses a pointer network to predict type annotations.

LambdaNet’s dataset takes a similar approach to DeepTyper: it consists
of the 300 most popular TypeScript projects from GitHub that contained
500–10,000 lines of code, and had at least 10% of type annotations that
referred to user-defined types. The dataset has about 1.2 million lines of
code, and only 2.7% of the code is duplicated. The 300 projects were split
into three sets: 200 (67%) for training data, 40 (13%) for validation data, and
60 (20%) for test data. The vocabulary was split into library types, which
consist of the top 100 most common types in the training set, and user-
defined types, which are all the classes and interfaces defined in source
projects. Similar to DeepTyper, LambdaNet’s predictions are evaluated
against the handwritten annotations that were added by programmers.

3.1.3 InCoder

InCoder [Fried et al., 2023] is a 6 billion parameter LLM for generating
arbitrary code that is trained with a FIM objective on a corpus of several
programming languages, including TypeScript. InCoder’s corpus consists
of permissively licensed, open-source code from GitHub and GitLab, as
well as Q&A and comments from Stack Overflow. This raw data is filtered
to exclude:

• code that is duplicated;

• code that is not written in one of 28 languages;

• files that that are extremely large or contain very few alphanumeric
characters;



3.1 type prediction models and accuracy 19

• code that is likely to be compiler generated; and

• certain code generation benchmarks.

The result is about 159 GB of code, which is dominated by Python and
JavaScript. TypeScript is approximately 4.5 GB of the training data.

I describe InCoder in more depth in Section 3.2.2.1, where I present what
is necessary to use it as a type annotation prediction tool for TypeScript.

3.1.4 StarCoder

StarCoder and StarCoderBase are 15 billion parameter LLMs that also
support FIM [Li et al., 2023a]. StarCoderBase was trained on The Stack [Ko-
cetkov et al., 2022], a dataset of code from permissively licensed GitHub
repositories. The Stack contains code from over 300 programming lan-
guages, but only 86 languages were selected to train StarCoderBase. Fur-
thermore, The Stack also includes natural language text from GitHub
issues and pull requests, as well as Git commits. After de-duplicating,
filtering, and cleaning, the final training dataset consists of 306 million
files, or 816 GB of data. About 65 GB (8%) was JavaScript and 27 GB (3%)
was TypeScript. StarCoderBase was trained on a total of one trillion tokens
from the training dataset. Afterwards, StarCoder was created by further
fine-tuning StarCoderBase on 35 billion tokens from the Python subset of
the training dataset.

In this dissertation, I use StarCoderBase, since StarCoder is specialized
for Python. From this point on, I refer specifically to StarCoderBase as the
model I work with.

3.1.5 Evaluating on Accuracy

The main evaluation criteria for the type annotation prediction task is
accuracy: what is the likelihood that a predicted type annotation is correct?
Correct means the prediction exactly matches the ground truth, which is
the handwritten type annotation at that location. Accuracy is typically
measured as top-k accuracy, where a prediction is deemed correct if any
of the top k most probable predictions is correct. Thus, a top-1 accuracy is
the likelihood that the top prediction is correct.

deeptyper . DeepTyper’s test dataset makes up 10% (78 projects) of
its original corpus and contains only the annotations that were manually
added by programmers. Predictions are compared against this ground
truth dataset, and DeepTyper reports a top-1 accuracy of 56.9%. Because
DeepTyper may predict different types for multiple occurrences of the
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same variable, Hellendoorn et al. also report an inconsistency metric: 15.4%
of variables had multiple type predictions.

lambdanet . LambdaNet also compares predictions against a ground
truth of handwritten type annotations, but Wei et al. use a different corpus
and split 20% (60 projects) for the test dataset. LambdaNet can predict
user-defined types, so the evaluation reports two sets of results: a top-1
accuracy of 75.6% when predicting only common library types, and a top-1
accuracy of 64.2% when predicting both library and user-defined types.

incoder . InCoder was not designed specifically to predict TypeScript
type annotations, but Fried et al. report an experiment to predict only the
result types for Python functions. For this task, InCoder was evaluated on a
test dataset of 469 functions, which was constructed from the CodeXGLUE
dataset; InCoder achieved an accuracy of 58.1%.

starcoderbase . Li et al. perform two experiments to evaluate type
prediction with FIM. The first experiment uses the benchmarks of Fried
et al. and evaluates Python return type prediction. The results show
that StarCoder and StarCoderBase achieve accuracies of 66.9% and 77.4%
respectively, which outperforms InCoder and SantaCoder.

The second experiment does not use accuracy, and is based on a revision
of my benchmark that was published in Yee and Guha [2023a]. That is,
the experiment evaluates TypeScript type prediction and evaluates with
the TypeScript type checker. However, the experiment is only based on
the “never typed” subset (Section 3.3.1) of my dataset, i. e., the packages
that have never been type annotated before. In this chapter, I provide the
results of the evaluation on the full dataset.

limitations of accuracy. I believe accuracy is not the right metric
for evaluating a type prediction model. As a first step, I would like to type
check the TypeScript project. Additionally, when migrating a JavaScript
project to TypeScript, there is frequently no ground truth of handwritten
type annotations; instead, the ground truth is what the compiler accepts.
This condition is much stronger than accuracy, as even a single, incorrect
type annotation causes a package to fail to type check. On the other
hand, less precise type annotations (e. g., any) and equivalent annotations
(e. g., number | string vs. string | number) may be accepted, despite
not matching the ground truth exactly.
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Figure 3.1: TypeWeaver workflow: a JavaScript dataset is given to a type pre-
diction model, which returns type annotations; next, type weaving
merges the type annotations with the original JavaScript code and
produces TypeScript; finally, the TypeScript is type checked by the
TypeScript compiler.

3.2 approach

I built TypeWeaver to evaluate TypeScript type prediction models. The
workflow for TypeWeaver is illustrated in Figure 3.1 and starts from
an untyped JavaScript project and finishes with a type-annotated Type-
Script project that can be given to the TypeScript type checker. The first
step, which is optional, is to convert from CommonJS modules to ECMA-
Script modules. Next, the JavaScript code is given to one of the supported
type prediction models: DeepTyper, LambdaNet, InCoder, or StarCoder-
Base. DeepTyper and LambdaNet produce type predictions rather than
TypeScript code, so a step called type weaving is needed to combine the
type predictions with the original JavaScript code to produce TypeScript.
Finally, TypeWeaver invokes the TypeScript compiler to type check the
now-migrated TypeScript project.

3.2.1 CommonJS to ECMAScript Module Conversion

The first step is to convert projects from CommonJS module notation to
ECMAScript module notation. This step is not necessary for type predic-
tion, but is important for the type checking evaluation, as only ECMAScript
modules preserve type information across module boundaries. Because
this step is optional, my dataset has two versions: the original projects,
which may use CommonJS or ECMAScript modules, and a final version
that only uses ECMAScript modules.

Most Node.js packages use the CommonJS module system, which was
the original module system for Node.js and remains the default. Fig-
ures 3.2a and 3.2b show an example of the CommonJS module system,
where files a.js and b.js implement separate modules. In this example,
a.js sets the foo and f properties of the special module.exports object.
Local variables like x are private and not exported. On line 104, b.js uses
the Node.js function require to load module a.js into the local variable a.
As a result, a takes on the value of the module.exports object set by a.js,
and both foo and f are available as properties of a.
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99 // a.js

100 var x = 2; // private

101 module.exports.foo = 42;

102 module.exports.f = (i) => i+x;

(a) CommonJS: a.js exports foo and f,
but not x.

103 // b.js

104 var a = require(’./a.js’);

105 console.log(a.foo); // 42

106 console.log(a.f(1)); // 3

(b) CommonJS: b.js imports the module
a.js, and can access a.foo and a.f.

107 // a.mjs

108 var x = 2; // private

109 export var foo = 42;

110 export var f = (i) => i+x;

(c) ECMAScript: a.mjs exports foo and
f, but not x.

111 // b.mjs

112 import {foo,f} from ’./a.mjs’;

113 console.log(foo); // 42

114 console.log(f(1)); // 3

(d) ECMAScript: b.mjs imports foo and
f from the module a.mjs.

Figure 3.2: An example comparing imports and exports with the CommonJS and
ECMAScript module systems.

ECMAScript 6 introduced a new module system, referred to as ECMA-
Script modules. Node.js supports ECMAScript modules when using the
.mjs extension or setting a project-wide configuration in the package.json

file. Figures 3.2c and 3.2d show the same program as before, but rewritten
to use ECMAScript modules. In this example, a.mjs directly exports foo

and f, rather than writing to a special module.exports object. Then, b.mjs
directly imports the names with the import statement instead of loading
an object.

TypeScript supports both CommonJS and ECMAScript modules, de-
pending on the project configuration. However, CommonJS modules in
TypeScript are untyped; specifically, require is typed as a function that
returns any. Therefore, even if a module has type annotations for the
variables and functions it exports, those annotations are lost when the
module is imported. On the other hand, with ECMAScript modules, the
import statement preserves the type annotations of names it imports.

In order to make use of the most type information available, I prefer
using ECMAScript modules in my evaluation. To ensure this, I use the
cjs-to-es6 tool [Lawson, 2016] to transform my dataset to use ECMA-
Script modules. The conversion tool is not perfect, and in particular has
difficulty when require is used to dynamically load a module. Some
of these cases could be fixed manually, but many are genuine uses of
dynamic loading in JavaScript.
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3.2.2 Type Annotation Prediction

The next step is to invoke a deep learning model to predict type anno-
tations for a JavaScript project. DeepTyper and LambdaNet require an
additional step, which I call type weaving, to produce TypeScript, while
InCoder and StarCoderBase, with a front end, output TypeScript directly.

I used the pretrained DeepTyper model available from its GitHub reposi-
tory, which is not identical to the model used in the DeepTyper paper [Hel-
lendoorn et al., 2019]. DeepTyper reads in a JavaScript file, and for each
identifier, predicts the top five most likely types, outputting the result in
comma-separated values (CSV) format.

I used the pretrained LambdaNet model available from its GitHub
repository, specifically the model that supports user-defined types [Wei et
al., 2020a]. The model reads in a directory containing a JavaScript project,
and predicts the top five most likely types for each variable and function
declaration. I modified LambdaNet to output in CSV format.

DeepTyper predicts types for all identifiers in the program, including
program locations that do not allow type annotations. Therefore, type
weaving must also ensure that type annotations are applied correctly, i. e.,
only to variable declarations, function parameters, and function results.
LambdaNet predicts types for variable and function declarations, and in
the correct locations; however, type weaving is still required to produce
TypeScript code. The InCoder and StarCoderBase front ends do not require
type weaving, but only support type predictions for function parameters.
I used the pretrained InCoder [Fried et al., 2022] and StarCoderBase [Li
et al., 2023b] models, both available from Hugging Face.

3.2.2.1 Type Prediction Front End

incoder . InCoder is trained to generate code in the middle of a pro-
gram, conditioned on the surrounding code. To train on a single example
(i. e., a file of code), the training procedure replaces a randomly selected
contiguous span of tokens with a mask sentinel token. It appends the mask
sentinel to the end of the example, followed by the tokens that were re-
placed and a special end-of-mask token. The model is then trained as a
left-to-right language model. This approach generalizes to support several,
non-overlapping masked spans, and its training examples have up to 256

randomly selected masked spans, though the majority have just a single
masked span.

In principle one could give InCoder a program with up to 256 types
to generate at once. However, I found that InCoder is more successful
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115 function f(x) {

116 return x + 1;

117 }

(a) An example program.

118 function f(x: <|mask:0|> ) {

119 return x + 1;

120 } <|mask:1|><|mask:0|>

(b) Preparing code for generation.

121 function f(x: <|mask:0|>) {

122 return x + 1;

123 }<|mask:1|><|mask:0|>

124 number, y: number<|endofmask|>

(c) InCoder often produces extra tokens
after the type. Here it produces a new
parameter that is not in the original
program.

125 function f(x: number) {

126 return x + 1;

127 }

128

(d) The front end selects a prefix of the
generated program that is a syntacti-
cally valid TypeScript type.

Figure 3.3: Generating types with InCoder.

generating a single type at a time, and with a limited amount of context.
Generating a type annotation with InCoder involves the following steps:

1. insert the mask sentinel token at the insertion point;

2. add the mask sentinel to the end of the file;

3. generate at the end of the file until the model produces the end-of-
mask token;

4. move the generated text to the insertion point; and

5. remove all sentinels.

Figure 3.3 shows an example of generating a type annotation. However,
InCoder will frequently generate more than just a single type. For instance,
Figure 3.3c shows an example where InCoder generates a new parameter
that is not in the original program. The simplest approach is to reject this
result and get InCoder to re-generate completions until it produces a type.
However, it is far more efficient to accept a prefix of the generated code if
it is a syntactically valid type, which is checked with a TypeScript parser
in the generation loop.

starcoderbase . The FIM training procedure for StarCoderBase is
similar to InCoder; however, the sentinel tokens are different. As a result,
the type prediction front end must be adapted to use those tokens, but
otherwise uses the same strategy to generate and parse type annotations.
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3.2.3 Type Weaving

To produce type-annotated TypeScript code, I use a process I call type
weaving to combine type predictions with the original JavaScript code. Type
weaving takes two files as input: a JavaScript source file and an associated
CSV file with type predictions. The type weaving program parses the Java-
Script source into an abstract syntax tree (AST), and then traverses the
AST and CSV files simultaneously, using the TypeScript compiler to insert
type annotations into the program AST. Both DeepTyper and LambdaNet
require type weaving, but their CSV files are in different formats. My type
weaving program can be extended to support custom CSV formats.

3.2.3.1 DeepTyper

Each row of a DeepTyper CSV file represents a lexical token from the
source program. Rows with non-identifier tokens, such as keywords and
symbols, contain two columns: the token text and the token type. Rows
with identifiers contain columns for the token text, token type, as well as
the top five most likely types and their probabilities.

The DeepTyper implementation has a few limitations that are handled
during type weaving. First, the implementation uses regular expressions
instead of a parser to tokenize JavaScript code. This results in some tokens
that are missing or incorrectly classified as identifiers. Second, DeepTyper
provides type predictions for every occurrence of an identifier, so type
weaving must use only the predictions for declarations. Finally, DeepTyper
often predicts complex as a type; these do not appear to refer to a complex
number type, so any is used instead.

My type weaving algorithm works as follows: as it traverses the program
AST, if it encounters a declaration node, it queries the CSV file for a type
prediction. However, the DeepTyper format does not record source location
information and the token classification is brittle, so it is not straightfor-
ward to identify which rows are actually declarations and which rows
should be skipped. My algorithm searches the CSV file for a short sequence
of rows that corresponds to the declaration node in the AST. This algo-
rithm works well in practice, but does not handle optional parameters or
statements that declare multiple variables.

3.2.3.2 LambdaNet

For each declaration, LambdaNet prints the source location of the identifier
(start line, start column, end line, and end column), followed by the top
five most likely types and their probabilities. I modified LambdaNet to
output in CSV format.
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LambdaNet frequently predicts the following types: Number, Boolean,
String, Object, and Void. The first four are valid TypeScript types, but
are non-primitive boxed types distinct from number, boolean, string, and
object. The TypeScript documentation strongly recommends using the
lowercase type names [Microsoft Corp., 2019], so type weaving normalizes
those types. Furthermore, Void is not a valid type, so type weaving normal-
izes it to void instead. Finally, LambdaNet does not support generic types,
but will predict them without type arguments, which is not valid in Type-
Script. While type weaving cannot fix every generic type, it normalizes
Array to any[], which is shorthand for Array<any>.

As the type weaving program traverses the program AST, if it encounters
a declaration node, it computes the node’s source location information,
and uses that to query the CSV file for a type prediction. However, the
type annotation cannot be applied directly to the declaration node, as this
modifies the AST and invalidates source location information. Therefore,
type weaving for LambdaNet occurs in two phases. In the first phase, the
traversal does not modify the AST, but saves the declaration node and type
prediction in a map. Then, in the second phase, type weaving iterates over
the map and updates the AST.

3.2.4 Type Checking

In the final step, TypeWeaver runs the TypeScript compiler to type check
the migrated projects. The compiler runs on each project, providing all the
TypeScript input files as arguments, and setting the following compiler
flags:

--noEmit Type check only, do not emit JavaScript

--esModuleInterop Improve handling of CommonJS and ECMAScript
modules

--moduleResolution node Explicitly set the module resolution strategy
to Node.js

--target es6 Enable ECMAScript 6 features, which are used by some
packages

--lib es2021,dom Include ECMAScript 2021 library definitions and
browser Document Object Model (DOM) definitions

TypeWeaver does not set the --strict flag, allowing the type checker to
be more lenient in certain situations, which should already be a significant
challenge for automated type migration. Furthermore, I ensure that pack-
age dependencies are properly included in the dataset so that the compiler
can resolve them.
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Table 3.1: Summary of TypeWeaver dataset categories: number of packages, files,
and lines of code (LOC).

Dataset category Packages Files LOC

DefinitelyTyped, no dependencies 282 2,653 121,137

DefinitelyTyped, with dependencies 83 652 61,229

Never typed, no dependencies 101 250 19,565

Never typed, with dependencies 40 544 19,189

Overall 506 4,099 221,120
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Figure 3.4: Empirical cumulative distribution function of LOC per package, over
all datasets. The x-axis shows LOC and the y-axis shows the proportion
of packages with fewer than x lines of code.

3.3 evaluation

3.3.1 Dataset

The TypeWeaver evaluation dataset consists of 506 JavaScript packages.
To build this dataset, I start from the top 1,000 most downloaded packages
from the npm Registry (as of August 2021) and narrow and clean as
follows:

1. I add any transitive dependencies that are not in the original set of
packages, to ensure that the dataset is closed.

2. I try to fetch the original source code of every package, and eliminate
any package where this is not possible (e. g., the package did not
provide a repository URL or was deleted from GitHub). Fetching the
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source helps obtain original code, and not compiled or “minified”
JavaScript.

3. I remove packages that were built from a “monorepo,” i. e., a single
repository containing multiple packages that are published sep-
arately. For example, the Babel JavaScript compiler has over 100

separate packages, but all share the same monorepo; fetching each
source package meant downloading the entire monorepo multiple
times and including unnecessary packages.

4. I remove packages that were not implemented in JavaScript, do
not contain code, or have more than 10,000 lines of code. The size
limit helps avoid timeouts, and mostly excludes large toolchains
and standard libraries, such as the TypeScript compiler and core-js

standard library.

5. I remove testing code from every package. Tests frequently require
extra dependencies, and different frameworks set up the test environ-
ment in different ways, which makes large-scale evaluation harder.
To remove testing code, I deleted directories named test, tests,
__tests__, or spec, and files named test.js, tests.js, test-*.js,
*-test.js, *.test.js, or *.spec.js.

6. Finally, I ensure that every package has no dependencies, or that all
its dependencies are typed, meaning the dependencies have TypeScript
type declaration (.d.ts) files available. (I do not require that packages
are typed, but only that their dependencies are.) This requirement is
necessary because a JavaScript package can only be imported into a
TypeScript project if its interface has TypeScript type declarations.
The DefinitelyTyped repository [DefinitelyTyped contributors, 2012]
contains interface type declarations for many popular JavaScript
packages, and a handful of packages include their own. I down-
load type declarations of project dependencies and include them
in the dataset for evaluation purposes—they are not used for type
prediction.

After filtering and cleaning the dataset, I classify each package with two
criteria: (1) whether the package has type declarations available; and
(2) whether the package has dependencies.

If a package has type declarations available, I say it is “DefinitelyTyped”
and use its type annotations as ground truth in the evaluation.3 Otherwise,
I use the term “never typed”: these packages have never been type annotated

3 However, there is evidence that some of these type annotations are incorrect [Feldthaus
and Møller, 2014; Kristensen and Møller, 2017a; Kristensen and Møller, 2017b; Williams
et al., 2017; Hoeflich et al., 2022].
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and thus no ground truth exists, so machine learning models have never
been evaluated on these packages before. If a package has dependencies,
I classify it as “with dependencies” (and from the filtering, this means
every dependency is typed); otherwise, I classify the package as “no
dependencies.” Thus, there are four dataset categories; I list them in
Table 3.1 along with the number of packages, files, and lines of code for
each category.

Figure 3.4 is an empirical cumulative distribution function of the lines
of code per package: the x-axis shows lines of code in a package and the
y-axis shows the proportion of packages with fewer than x lines of codes.
From the graph, we observe that approximately 90% of packages have
fewer than 1,000 lines of code, and approximately 95% of packages have
fewer than 2,000 lines of code.

3.3.2 TypeScript Built-in Type Inference

The TypeScript compiler can be configured to generate .d.ts TypeScript
type declaration files. This uses the compiler’s built-in type inference
to generate type annotations for module interfaces. In other words, it
only annotates functions and constants that are explicitly exported by
the module, and none of the internal, private definitions. Furthermore,
the compiler attempts to infer type-correct annotations, even if it means
inferring any.

Importantly, the TypeScript compiler does not generate actual TypeScript
code, i. e. .ts files, that can be type checked.4 Therefore, the TypeScript
compiler cannot be used for a full JavaScript-to-TypeScript migration, and
is not comparable to the type prediction models I evaluate.

Nevertheless, for certain experiments, I compare the type prediction
models to the TypeScript compiler baseline. These experiments involve
trivial type annotations (Section 3.3.3.3) and accuracy (Section 3.3.3.4).

To generate type declaration files, TypeWeaver invokes the TypeScript
compiler on each JavaScript project, with the following flags:

--declaration Generate .d.ts files for each JavaScript (and TypeScript)
file given as input

--allowJs Allow JavaScript files to be processed by the compiler

--emitDeclarationOnly Output .d.ts files and not JavaScript files (which
would overwrite the existing JavaScript files)

--esModuleInterop

4 For a file a.js, the TypeScript compiler generates a.d.ts, which cannot be type checked
on its own. However, if a file b.js imports a.js, then the type-annotated declarations in
a.d.ts are checked against calls in b.js.
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--moduleResolution node

--target es6

--lib es2021,dom

The last four flags are the same as the ones described in Section 3.2.4.
Running the TypeScript compiler with these flags will output file.d.ts
in the same directory as file.js, where file.js is given to the compiler.

3.3.3 Success Rate of Type Checking

3.3.3.1 Do Migrated Packages Type Check?

The first question to ask is whether entire packages type check after
automated migration from JavaScript to TypeScript. However, not all
packages successfully translate to TypeScript with every migration tool;
some packages cause the type migration tool to time out or error. Thus,
I report the success rate of type checking as a fraction of packages that
successfully translate to TypeScript.

Table 3.2 and Figure 3.5 show the fraction of packages that type check
with each tool. DeepTyper and InCoder perform similarly (22–24% success
rate), LambdaNet performs worse (10% success rate), and StarCoder-
Base performs best (31% success rate). Across all tools, packages without
dependencies type check at a higher rate than packages with dependencies.

These package-level type checking results are disappointing—but this
is a very high standard to meet. Even a single incorrect type annotation
causes the entire package to fail. Therefore, I next consider a finer-grained
metric that is still useful.

3.3.3.2 How Many Files are Error Free?

As an alternate measure, I consider the percentage of files with no compila-
tion errors. Instead of a binary pass/fail outcome, this is a more fine-grained
result for a package, which is motivated by observing that TypeScript files
are modules with explicit imports and exports. If a file type checks without
errors, then it is using all of its internal and imported types consistently.
Thus, when triaging type errors, a programmer may (temporarily) set
these files aside and focus on the files with compilation errors. However,
the programmer may later need to return to a file with no type errors and
adjust its type annotations, for example, if a consumer of that file expects
a different interface. Examples of this are presented in the case studies,
specifically Sections 3.3.6.2 and 3.3.6.3.

Table 3.3 and Figure 3.7 present the fraction of files with no compilation
errors. The results are more encouraging: using StarCoderBase, 69% of files
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Table 3.2: Number and percentage of packages that type check.
(1) DefinitelyTyped, no dependencies
(2) DefinitelyTyped, with dependencies
(3) Never typed, no dependencies
(4) Never typed, with dependencies
✓ = number of packages that type check
# = total number of packages
% = percentage of packages that type check

DeepTyper LambdaNet InCoder StarCoderBase

Dataset ✓ # % ✓ # % ✓ # % ✓ # %

(1) 54 226 23.9 24 213 11.3 56 245 22.9 77 245 31.4

(2) 5 53 9.4 1 50 2.0 9 65 13.8 9 65 13.8

(3) 31 86 36.0 11 79 13.9 26 91 28.6 41 91 45.1

(4) 5 36 13.9 3 32 9.4 4 37 10.8 8 37 21.6

Overall 95 401 23.7 39 374 10.4 95 438 21.7 135 438 30.8
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Figure 3.5: Percentage of packages that type check.
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Figure 3.6: Number of packages vs. percentage of error-free files per package.

are error free, and the other models also show improvement. With these
results, it is not clear that packages without dependencies outperform
packages with dependencies. Finally, Figure 3.6 shows the percentage of
error-free files for each package, and plots histograms of the distribution.
Across all tools, most packages have type errors in most or all files.

3.3.3.3 What Percentage of Type Annotations Are Trivial?

Next, I examine what percentage of type annotations, within the error-free
files, are trivial, i. e., what percentage are any, any[] (array of anys), or
Function (function that accepts any arguments and returns anything).
These annotations can hide type errors and allow more code to type check;
however, they provide little value to the programmer.

Table 3.4 and Figure 3.8 shows the percentage of trivial type annotations
within error-free files. DeepTyper produces the most (about 60%), Lambda-
Net and the TypeScript compiler produce the least (about 30%), while
InCoder, and StarCoderBase are in between (45–48%).

Comparing to the percentage of files with no compilation errors (Fig-
ure 3.7), DeepTyper produces more type-correct code than LambdaNet,
but it also generates more trivial type annotations. The TypeScript com-
piler, InCoder, and StarCoderBase produce the most type-correct code,
while generating a moderate percentage of trivial type annotations.

However, the TypeScript compiler result is misleading: Table 3.4 shows
that the TypeScript compiler generates an order of magnitude more type
annotations than any other system. This is because many packages export
dictionaries of values, which are normally not annotated. However, when
the TypeScript compiler generates type definitions, it converts dictionary
values into exported constants and infers types for those constants. Since
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Table 3.3: Number and percentage of files with no compilation errors.
(1) DefinitelyTyped, no dependencies
(2) DefinitelyTyped, with dependencies
(3) Never typed, no dependencies
(4) Never typed, with dependencies
✓ = number of files with no compilation errors
# = total number of files
% = percentage of files with no compilation errors

DeepTyper LambdaNet InCoder StarCoderBase

Dataset ✓ # % ✓ # % ✓ # % ✓ # %

(1) 337 853 39.5 364 1,328 27.4 913 1,523 59.9 1,049 1,523 68.9

(2) 73 195 37.4 52 257 20.2 219 424 51.7 220 424 51.9

(3) 91 185 49.2 60 198 30.3 97 221 43.9 116 221 52.5

(4) 42 116 36.2 25 529 4.7 474 539 87.9 477 539 88.5

Overall 543 1,349 40.3 501 2,312 21.7 1,703 2,707 62.9 1,862 2,707 68.8
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Figure 3.7: Percentage of files with no compilation errors.



34 evaluating type prediction models

Table 3.4: Number and percentage of type annotations that are any, any[], or
Function, in files with no errors.
(1) DefinitelyTyped, no dependencies
(2) DefinitelyTyped, with dependencies
(3) Never typed, no dependencies
(4) Never typed, with dependencies
✓ = number of trivial type annotations
# = total number of type annotations
% = percentage of trivial type annotations

tsc DeepTyper LambdaNet InCoder StarCoderBase

Dataset ✓ # % ✓ # % ✓ # % ✓ # % ✓ # %

(1) 2,480 6,199 40.0 749 1,189 63.0 279 968 28.8 664 1,439 46.1 1,032 1,866 55.3

(2) 357 883 40.4 101 164 61.6 9 43 20.9 288 696 41.4 211 692 30.5

(3) 317 2,807 11.3 204 331 61.6 21 82 25.6 42 67 62.7 117 237 49.4

(4) 131 677 19.4 106 152 69.7 15 66 22.7 14 50 28.0 18 62 29.0

Overall 3,285 10,566 31.1 1,160 1,836 63.2 324 1,159 28.0 1,008 2,252 44.8 1,378 2,857 48.2
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Figure 3.8: Percentage of type annotations that are any, any[], or Function, in
files with no errors.
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the values are known, the type annotations will not be trivial, which
artificially suppresses the percentage of trivial type annotations.

3.3.3.4 Do Migrated Types Match Human-Written Types (When Available)?

Since my dataset is constructed from JavaScript packages instead of Type-
Script packages, it does not have fully type-annotated files as ground truth;
instead, I use declaration files provided by the DefinitelyTyped repository
or package author. I configure the TypeScript compiler to emit declarations
during type checking, which it can do even if the whole package does
not type check. Thus, I compare handwritten, ground truth declarations
against declarations generated from migrated packages.

I extract function signatures from declaration files and only compare
a signature if it is in both the ground truth and generated declaration.
I compare the function parameter types and return types one-to-one,
ignoring modifiers (e. g., readonly), and require an exact string match (i. e.
string | number and number | string are considered different types).
Following the literature, I skip a comparison if the ground truth is the any

annotation.
The results are presented in Table 3.5 and Figure 3.9: accuracy is gener-

ally better for packages without dependencies. Additionally, these results
follow the same pattern in prior work, where LambdaNet has better accu-
racy than DeepTyper, despite performing worse in other metrics. However,
StarCoderBase has the best accuracy, while the TypeScript compiler and
InCoder perform poorly.

3.3.3.5 How Many Errors Occur in Each Package?

Figure 3.10 shows an empirical cumulative distribution function of errors:
the x-axis shows the number of errors and the y-axis shows the proportion
of packages with fewer than x errors. For example, when migrating the
“DefinitelyTyped, with dependencies” dataset with LambdaNet, approxi-
mately 80% of packages have fewer than 250 errors each. Additionally, all
of DeepTyper’s packages and almost all of InCoder’s packages have fewer
than 500 errors each.

3.3.4 Error Analysis

Next, I consider the kinds of errors that arise during migration. Every
TypeScript compiler error has an associated code [TypeScript contributors,
2022], making categorization straightforward. Figure 3.11 summarizes the
top 10 most common errors and Table 3.6 provides the corresponding
messages.
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Table 3.5: Accuracy of type annotations, compared to non-any ground truth.
(1) DefinitelyTyped, no dependencies
(2) DefinitelyTyped, with dependencies
✓ = number of matching type annotations
# = total number of type annotations
% = percentage of matching type annotations

tsc DeepTyper LambdaNet InCoder StarCoderBase

Dataset ✓ # % ✓ # % ✓ # % ✓ # % ✓ # %

(1) 130 436 29.8 85 209 40.7 103 227 45.4 34 105 32.4 72 144 50.0

(2) 41 155 26.5 15 44 34.1 18 40 45.0 5 33 15.2 17 31 54.8

Overall 171 591 28.9 100 253 39.5 121 267 45.3 39 138 28.3 89 175 50.9
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Figure 3.9: Accuracy of type annotations, compared to non-any ground truth.
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Figure 3.10: Empirical cumulative distribution function of errors per package.
The x-axis shows the number of errors and the y-axis shows the
proportion of packages with fewer than x errors.

Most of the errors relate to types. These errors are the following: a
property not existing on a type (TS2339 and TS2551); an assignment with
mismatched types (TS2322); a function call with mismatched parameter
and argument types (TS2345); calling a function that was assigned a non-
function type annotation (TS2349); and a conditional that compares values
from different types (TS2367).

The remaining errors are not directly related to types. TS2304 and TS4078

refer to an unknown name, which may not necessarily be a type. TS2554
is emitted because TypeScript requires the number of call arguments to
match the number of function parameters, but JavaScript does not. TS2339
includes cases where an empty object is initialized by setting its properties,
but TypeScript requires that the object’s properties are declared in its
type. Finally, TS2307 indicates that the ECMAScript module conversion
produced incorrect code.

3.3.5 ECMAScript Module Conversion

Recall that there is an optional step before evaluation: converting packages
to use ECMAScript modules. In this section, I re-run the evaluation—
predicting types, weaving types, and type checking—to compare the
results before and after the conversion step. Specifically, I examine the
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Figure 3.11: Distribution of the top 10 most common error codes, over all datasets.

percentage of packages that type check (Table 3.7), the percentage of files
with no errors (Table 3.8), and accuracy (Table 3.9). However, this is not
a direct comparison between CommonJS and ECMAScript modules, as
some of the original packages were already using ECMAScript modules.
Furthermore, the conversion affected a small handful of packages: some
packages successfully migrated to TypeScript after the conversion but
failed before, and the inverse was true for other packages.

Table 3.7 shows that ECMAScript module conversion makes fewer
packages type check for DeepTyper, but slightly improves the results for
LambdaNet. For InCoder and StarCoderBase, ECMAScript module con-
version has little effect. Figure 3.12 compares packages that type checked
before or after the ECMAScript module conversion; packages that never
type checked were excluded. In general, if a package type checked before
the conversion, it likely type checked after the conversion. However, if
a package failed to type check before the conversion, it was unlikely to
type check afterwards; in fact, this never happened for a package with
dependencies.

Table 3.8 compares the percentage of files with no compilation errors.
The conversion improves the results for InCoder and StarCoderBase, but
makes the results slightly worse for LambdaNet and much worse for
DeepTyper.

The conversion improves the results for LambdaNet and InCoder, but
makes the results worse for DeepTyper. One dramatic result is the change
for InCoder and the “never typed, with dependencies” dataset, where
the ECMAScript module conversion results in 88% of files type check-
ing, when it was only 12% before. The difference is caused by a single
package, regenerate-unicode-properties, which has over 400 files. With
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Table 3.6: The top 10 most common error codes and their messages.
DT = DeepTyper; LN = LambdaNet; IC = InCoder; SC = StarCoderBase

Error Message DT LN IC SC

TS2339 Property ’0’ does not exist on type ’1.’ 2,222 15,130 4,520 3,760

TS2322 Type ’0’ is not assignable to type ’1’. 1,240 2,692 112 103

TS2345 Argument of type ’0’ is not assignable to
parameter of type ’1’.

241 2,581 522 287

TS2304 Cannot find name ’0’. 166 440 1,225 717

TS2554 Expected 0 arguments, but got 1. 241 582 560 561

TS2307 Cannot find module ’0’ or its correspond-
ing type declarations.

269 304 271 271

TS2551 Property ’0’ does not exist on type ’1’.
Did you mean ’2’?

173 354 343 337

TS2349 This expression is not callable. 895 292 15 10

TS4078 Parameter ’0’ of exported function has
or is using private name ’1’.

17 18 616 302

TS2367 This comparison appears to be uninten-
tional because the types ’0’ and ’1’ have
no overlap.

103 676 91 25

Other 738 2,537 2,000 1,679

Total 6,305 25,606 10,275 8,052

CommonJS modules, each file produces an error; however, with ECMA-
Script modules, those files type check successfully.

Finally, Table 3.9 compares the accuracy of type annotations, before and
after the ECMAScript module conversion. Recall that for accuracy, type
annotations are compared against the ground truth of handwritten Type-
Script declaration files; these are the “DefinitelyTyped” datasets. Accuracy
improves for DeepTyper and LambdaNet, but worsens slightly for InCoder
and StarCoderBase.

3.3.6 Case Studies

In this section, I examine how the models performed on four packages,
whether the packages type check, and what steps are left to migrate the
packages to TypeScript.
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Table 3.7: Percentage of packages that type check, before and after ECMAScript
module conversion.
(1) DefinitelyTyped, no dependencies
(2) DefinitelyTyped, with dependencies
(3) Never typed, no dependencies
(4) Never typed, with dependencies

DeepTyper LambdaNet InCoder StarCoderBase

Dataset Before After Before After Before After Before After

(1) 25.7 23.9 9.0 11.3 21.3 22.9 28.4 31.4

(2) 11.9 9.4 2.9 2.0 14.5 13.8 15.7 13.8

(3) 34.7 36.0 11.6 13.9 26.7 28.6 43.6 45.1

(4) 28.2 13.9 8.8 9.4 22.5 10.8 37.5 21.6

Overall 25.8 23.7 8.5 10.4 21.3 21.7 30.0 30.8

Never typed, no deps Never typed, with deps

DefinitelyTyped, no deps DefinitelyTyped, with deps

DeepTyper LambdaNet InCoder StarCoderBase DeepTyper LambdaNet InCoder StarCoderBase
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Figure 3.12: Packages that type check before and after ECMAScript module con-
version; before but not after conversion; and after but not before
conversion.
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Table 3.8: Percentage of files with no compilation errors, before and after ECMA-
Script module conversion.
(1) DefinitelyTyped, no dependencies
(2) DefinitelyTyped, with dependencies
(3) Never typed, no dependencies
(4) Never typed, with dependencies

DeepTyper LambdaNet InCoder StarCoderBase

Dataset Before After Before After Before After Before After

(1) 43.7 39.5 26.6 27.4 69.7 59.9 75.3 68.9

(2) 51.2 37.4 24.9 20.2 50.0 51.7 50.9 51.9

(3) 48.8 49.2 25.4 30.3 41.6 43.9 50.4 52.5

(4) 64.5 36.2 8.6 4.7 11.6 87.9 12.3 88.5

Overall 47.5 40.3 22.8 21.7 57.2 62.9 61.6 68.8

Table 3.9: Accuracy of type annotations, before and after ECMAScript module
conversion.
(1) DefinitelyTyped, no dependencies
(2) DefinitelyTyped, with dependencies

DeepTyper LambdaNet InCoder StarCoderBase

Dataset Before After Before After Before After Before After

(1) 35.6 40.7 44.4 45.4 33.6 32.4 55.5 50.0

(2) 25.0 34.1 35.7 45.0 19.0 15.2 51.9 54.8

Overall 31.7 39.5 42.3 45.3 28.6 28.3 54.5 50.9
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129 // Original

130 const handlePreserveConsecutiveUppercase =

131 (decamelized, separator) => {

132 // code omitted and simplified

133 return decamelized.replace(

134 /([A-Z]+)([A-Z][a-z]+)/gu,

135 (_, $1, $2) => $1 + separator + $2.toLowerCase(),

136 );

137 }

138

139 // Elsewhere in the package; str and sep are both strings

140 return handlePreserveConsecutiveUppercase(str, sep);

141

142 // DeepTyper solution

143 const handlePreserveConsecutiveUppercase: string =

144 (decamelized: string, separator: string) => { ... }

145

146 // LambdaNet solution

147 const handlePreserveConsecutiveUppercase: Function =

148 (decamelized: string, separator: number) => { ... }

Figure 3.13: The handlePreserveConsecutiveUppercase function adapted from
the decamelize package. The DeepTyper and LambdaNet solutions
are also shown.

3.3.6.1 Error Message Does Not Refer to Incorrect Type Annotation

decamelize is a package for converting strings in camel case to lowercase.5

It is in the “DefinitelyTyped, no dependencies” dataset, as it ships with
a .d.ts declaration file and has no dependencies. Figure 3.13 shows a
simplified version of the function handlePreserveConsecutiveUppercase.
This function is not exported, thus there are no programmer-written type
annotations. Line 131 uses JavaScript’s arrow function notation to define
a function that takes two arguments, and assigns it to the constant on
line 130. Elsewhere in the package (line 140 in the listing), the helper
function is called with str and sep string arguments.

A programmer inspecting the function can reason that line 133 is a call to
a string method that uses a regular expression on line 134 to replace text in
decamelized with the result on line 135, where separator is concatenated
with the regular expression match. Therefore, both the decamelized and
separator parameters on line 131 should be annotated as string.

The DeepTyper solution is listed on line 143: it correctly annotates both
function parameters as string, but incorrectly annotates handlePreserve-

ConsecutiveUppercase as string. The compiler emits errors for lines 140

5 https://www.npmjs.com/package/decamelize

https://www.npmjs.com/package/decamelize
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149 // Original

150 export const write =

151 function (buffer, value, offset, isLE, mLen, nBytes) { ... }

152

153 // Ground truth signature

154 export function write(

155 buffer: Uint8Array, value: number, offset: number, isLE: boolean,

156 mLen: number, nBytes: number): void;

157

158 // DeepTyper solution

159 export const write: void = function (

160 buffer: Buffer, value: number, offset: number, isLE: number,

161 mLen: number, nBytes: number) { ... }

162

163 // InCoder solution

164 export const write = function (

165 buffer: Buffer, value: any, offset: number, isLE: boolean,

166 mLen: number, nBytes: number) { ... }

Figure 3.14: The write function adapted from the ieee754 package. The ground
truth signature is also shown, along with the DeepTyper and InCoder
solutions.

and 144, because line 140 is attempting to call a non-function, and line 144

is attempting to assign a function to a non-function variable. However, the
fix must be applied to the annotation on line line 143.

3.3.6.2 Incorrect Type Annotation Can Type Check Successfully

The LambdaNet solution on line 147 correctly annotates handlePreserve-

ConsecutiveUppercase as Function, but it incorrectly annotates the sepa-

rator parameter on line 148 as number. A programmer might expect the
compiler to emit a type error, since line 140 calls the function with string
arguments. However, the code type checks successfully, because the generic
Function type on line 147 accepts any number of arguments of any type.
The Function type annotation is similar to any, in that it enables more
code to type check, but at the cost of fewer type guarantees.

Another example of this problem is the ieee754 package, which reads
and writes floating point numbers to and from buffers.6 It is categorized as
“DefinitelyTyped, no dependencies,” since it provides a .d.ts declaration
file and has no dependencies. Figure 3.14 shows the original declaration
for the write function on line 150, and the handwritten, ground truth
signature on line 154.

6 https://www.npmjs.com/package/ieee754

https://www.npmjs.com/package/ieee754
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167 // LambdaNet solution

168 export default function (thingToPromisify: string) {

169 if (typeof thingToPromisify === ’function’) {

170 return promisify(thingToPromisify)

171 }

172 throw new TypeError(’Can only promisify functions or objects’)

173 };

Figure 3.15: The LambdaNet solution for a function adapted from the @gar/-

promisify package.

Consider the DeepTyper solution: the compiler emits an error on line 159,
because a function is being assigned to a variable of type void. However,
even if that error is fixed, there is another, more subtle error not detected
by the compiler: the isLE parameter on line 160 is incorrectly annotated
as number, not boolean. Because this is compatible with the body of the
function, there is no error.7

The InCoder solution on line 164 type checks successfully. It also uses
the Buffer type for buffer, and it uses any instead of number for the value

parameter on line 165. However, the any annotation may cause run-time
errors if the function is called with arguments of the wrong type.

3.3.6.3 Run-Time Type Assertions

The @gar/promisify package,8 simplified and shown in Figure 3.15, is
another example where a program type checks, but is incorrect. The
example exports a function that takes an argument thingToPromisify,
type annotated as string by LambdaNet. Line 169 performs a run-time
type check with the typeof operator. This ensures that thingToPromisify
is a function on line 170, which is what the promisify function, defined
by Node.js, expects. If thingToPromisify is not a function, the exception
on line 172 is thrown.

The example type checks successfully, because the TypeScript compiler
treats the typeof check as a type guard, and reasons that on line 170, the
thingToPromisify variable has been narrowed [Microsoft Corp., 2020] to
a more specific type. However, because thingToPromisify is annotated as
string, the type guard always returns false. Therefore, line 170 is actually
unreachable, so the exception on line 172 is always thrown.

7 The Buffer annotation is valid, despite not matching the ground truth Uint8Array, because
Buffer is defined by the Node.js standard library as a subtype of Uint8Array.

8 https://www.npmjs.com/package/@gar/promisify

https://www.npmjs.com/package/@gar/promisify
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174 export default function(arr: any[]) {

175 var len: number = arr.length;

176 var o: object = {};

177 var i: number;

178

179 for (i = 0; i < len; i += 1) { ... }

180

181 for (i in o) { ... }

182 };

Figure 3.16: The LambdaNet solution for a function adapted from the array-

-unique package.

3.3.6.4 Variable Used as Two Different Types

The example in Figure 3.16 is adapted from the array-unique package.9

The example contains two for loops: a traditional, counter-based for

loop on line 179, and a for...in loop on line 181 that iterates over all
enumerable string properties of an object. Both loops share the same loop
variable, i, defined on line 177 and annotated as number by LambdaNet.

The use of i on line 181 causes a type error, as for...in loops require the
loop variable to be string. However, changing the annotation on line 177 to
string causes a type error on line 179, as counter-based for loops require
the loop variable to be number. One solution is to use the any annotation,
and another is to use the union type number | string. Ultimately, the
correct solution is to define separate loop variables; this example highlights
that code written in JavaScript may need to be refactored for TypeScript.

3.4 discussion

how should type prediction models be evaluated? Prior
work has used accuracy to evaluate type prediction models, but I argue
that we should instead type check the generated code. My methodology
makes it possible to evaluate performance on code without known type
annotations, i. e., code that has never been typed before. In contrast, prior
work required the benchmarks to have ground truth type annotations. My
approach also reduces the likelihood of training data leaking into the test
set.

One limitation of my approach is that code may type check with trivial
type annotations (e. g., any or Function) that provide little benefit to the
programmer. Furthermore, type correctness does not necessarily mean
the type annotations are correct: any can hide type errors that are only

9 https://www.npmjs.com/package/array-unique

https://www.npmjs.com/package/array-unique
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encountered at run time. Therefore, it is also important to measure the
proportion of trivial annotations.

can slightly wrong type annotations be useful? A type
prediction model may suggest types that are slightly wrong and easily
fixable by a programmer, but fail to type check. However, a tool that
produces hundreds or thousands of slightly wrong type annotations would
overwhelm the programmer, and I believe it is important to build tools
that try to produce fewer errors. On the other hand, slightly wrong type
annotations may still provide value, but “slightly wrong” needs to be
defined and measured. Without a tool like TypeWeaver, which weaves
type annotations into code and type checks the result, it would not be
possible to ask these questions.

should evaluation use javascript or typescript programs?
In this chapter, I chose to evaluate on JavaScript programs, so my dataset
deviates from prior work, which only considered TypeScript. The motivat-
ing problem is not to recover type annotations for TypeScript programs
that already type check, but to migrate untyped JavaScript programs to
type-annotated TypeScript. For this problem, type prediction on its own is
not enough, and other steps and further refactoring may be required.

However, there may be scenarios where a type prediction model is used
to generate type annotations for a partially annotated TypeScript project.
In these situations, type migration would likely not require additional
refactoring steps.

can type migration be fully automated? My results show that
automatically predicting type annotations is a challenging task and much
work remains to be done. Furthermore, migrating JavaScript to TypeScript
involves more than just adding type annotations: the two languages are
different and some refactoring may be required. The models I evaluate
in this dissertation do not refactor code, and I believe it is unlikely for
automated type migration to be perfect. Thus, some manual refactoring
will always be necessary for certain kinds of code, but I believe that tools
can reduce the overall burden on programmers.



4
T R A I N I N G T Y P E P R E D I C T I O N M O D E L S

Large language models (LLMs) have been successful at a variety of code
generation tasks, and fill in the middle (FIM), where the model generates
code in the middle of a program, conditioned on the surrounding context,
is a natural fit for type prediction. However, my colleagues and I find
several challenges that prevent these models from working out of the
box [Cassano, Yee, et al., 2023b]. First, FIM models are trained to infill
code that typically spans multiple lines, which inhibits their ability to
infer end tokens after short token sequences such as type annotations.
Second, models generally do not understand the implicit type constraints
within a program, which produces programs that may not type check [Yee
and Guha, 2023a; Pradel et al., 2020]. These errors are tedious for human
programmers to manually resolve. Third, entire programs are often very
large and may not fit within a context window. This problem exists more
broadly in code generation models, and even more broadly in almost
every transformer-based language model. Even in emerging models with
larger context windows, the relevant context for an arbitrary type may
be spread over long sequences within a program. This problem becomes
more apparent in larger context models that trade adequate attention for
performance [Shi et al., 2023; Sun et al., 2021].

There are two problems specific to LLMs that we must address. First,
a language model can only accept a limited number of tokens as input.
(Recall that a tokens are the basic units of input and output for an LLM,
and may not necessarily correspond to lexical tokens of a program.) This
token limit is called the context window, and programs can be arbitrarily
large and therefore cannot fit within a context window. Second, FIM can
generate unwanted code, as discussed in Section 3.2.2.1. For example,
consider a single-parameter function that is given to a model:

183 function f(x) {

184 return x + 1;

185 }

However, the model produces the following:

186 function f(x: number, y: number ) {

187 return x + 1;

188 }

In the output, x is correctly annotated as number, but an additional param-
eter y is generated.

47
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To address these issues, my colleagues and I built OpenTau [Cassano,
Yee, et al., 2023b; Cassano, Yee, et al., 2023a], which handles the large
context problem by recursively decomposing a program into smaller con-
texts, and then running inference on the respective subprograms. OpenTau

handles the combinatorial explosion problem that naturally arises from
deep and wide trees, and uses local type inference for simple variable dec-
larations. Furthermore, our work proposes a new evaluation methodology
for gradual type migration that measures program typedness, the degree
to which migrated programs contain type information. Additionally, we
introduce fill in the type (FIT), a new fine-tuning approach that adapts FIM

for training type prediction.

4.1 overview

Programs are often large and complex, and may not fit into a model’s
context window. Even in emerging models with larger context windows,
performance may be poor as the relevant context for an arbitrary type can
be spread across long sequences within a program. Furthermore, a model
may predict multiple annotations for each type annotation site, leading to
a combinatorial explosion.

To make the problem tractable, OpenTau decomposes the input program
into a tree, with each node representing a code block. Next, it traverses the
tree in bottom-up level order, visiting child nodes before their parents. It
generates candidate solutions for each node, where a candidate is a type-
annotated code block. This step includes child candidates as context for
type prediction of the parent node. The traversal continues until reaching
the root node, where it produces a collection of fully typed program
candidates. Finally, OpenTau scores and ranks the program candidates,
returning the best solution as the final, fully typed program.

decomposition. Figure 4.1a shows a TypeScript program with type
annotation sites denoted by _hole_. The tree representation is shown in
Figure 4.1b and follows the structure of the program. Functions hello

and helloGen are defined at the top level, so their nodes are under the
root. helloHelper is nested within helloGen, so it is a child node of
helloGen. Finally, variable declarations greeting and suffix are grouped
into varNode1.

tree traversal . After decomposing the program, OpenTau traverses
the tree representation and generates type predictions for each code block.
It starts with helloHelper (a leaf node) and builds a prompt for the model.
The prompt is composed of the original text of helloHelper with the type
annotations masked with _hole_, as shown in Figure 4.2a. Then, the model
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189 let greeting: _hole1_ = "Hello";

190 let suffix: _hole2_ = "!";

191

192 // Produces a greeting for the given name

193 const hello = (name: _hole3_ ): _hole4_ => {

194 return greeting + " " + name;

195 };

196

197 function helloGen(name: _hole5_ ): _hole6_ {

198 const helloHelper = (): _hole7_ => {

199 return hello(name) + suffix;

200 };

201 return helloHelper;

202 }

(a) An example TypeScript program, with holes inserted.

root

varNode1 hello helloGen

helloHelper

(b) Tree representation of the program.

Figure 4.1: A TypeScript program and its tree representation. The unannotated
program is provided as input to OpenTau.

infers a set of type annotations for the node and infills each _hole_ with its
corresponding type annotation, labeling this result the candidate solution,
which is shown in Figure 4.2b.

Next, the traversal continues one level up and produces candidate
solutions for hello, helloGen, and varNode1. hello is a leaf node, so
OpenTau infers type annotations in the same fashion as helloHelper.
varNode1 contains variable declarations, which will be handled in the
parent node.

helloGen is treated differently, as it contains helloHelper as a child node
and must consider its candidate solutions as context. In this example, there
is only one candidate. OpenTau incorporates helloHelper’s candidate
solution into helloGen’s prompt, resulting in Figure 4.3a. In this example,
the model generates two candidate solutions for helloGen. For brevity,
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203 const helloHelper = (): _hole_ => {

204 return hello(name) + "!";

205 };

(a) Prompt.

206 const helloHelper = (): string => {

207 return hello(name) + suffix;

208 };

(b) Candidate solution.

Figure 4.2: Prompt and candidate solution for helloHelper.

209 function helloGen(name: _hole5_ ): _hole6_ {

210 const helloHelper = (): string => {

211 return hello(name) + suffix;

212 };

213

214 return helloHelper;

215 }

(a) Prompt.

// Solution 1

string // _hole5_

() => string // _hole6_

// Solution 2

string // _hole5_

Function // _hole6_

(b) Type annotations.

Figure 4.3: Prompt and type annotations for helloGen.

only the type annotations are shown in Figure 4.3b; they are substituted
for the holes in Figure 4.3a to produce helloGen’s candidate solutions.

Finally, the traversal reaches the root node. To produce candidate solu-
tions for the entire program, OpenTau considers the candidate solutions
from varNode1, hello, and helloGen. varNode1 contains variable decla-
rations, so OpenTau invokes the TypeScript compiler and determines
that both greeting and suffix have type string. hello has only one
candidate solution, but helloGen has two candidate solutions. Therefore,
OpenTau composes a set of root candidate solutions from the combination
set of varNode1, hello, and helloGen’s candidate solutions, which results
in a total of two candidate solutions for the program. Figure 4.4 shows
both solutions for the program, with the difference being the highlighted
annotations, () => string in Figure 4.4a and Function in Figure 4.4b.

ranking . Given a set of typed programs, OpenTau scores and ranks
candidate solutions and selects the best one. The evaluation methodology
consists of two components: the number of type errors present and a
typedness score that measures the overall type precision of the candidate
solution. OpenTau returns the program with the fewest type errors with
ties broken by typedness.
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223 let greeting: string = "Hello";

224 let suffix: string = "!";

225

226 // Produces a greeting for the given name

227 const hello = (name: string): string => {

228 return "Hello " + name;

229 };

230

231 function helloGen(name: string): () => string {

232 const helloHelper = (): string => {

233 return hello(name) + suffix;

234 };

235 return helloHelper;

236 }

(a) Candidate solution #1.

237 let greeting: string = "Hello";

238 let suffix: string = "!";

239

240 // Produces a greeting for the given name

241 const hello = (name: string): string => {

242 return "Hello " + name;

243 };

244

245 function helloGen(name: string): Function {

246 let suffix: string = "!";

247 const helloHelper = (): string => {

248 return hello(name) + suffix;

249 };

250 return helloHelper;

251 }

(b) Candidate solution #2.

Figure 4.4: Both candidate solutions for the program, with the different type
annotation highlighted.
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252 function h(name: Name): string {

253 return "Hello " + name;

254 }

(a) A function that may have high accu-
racy, but fails to type check.

255 function h(name: any): any {

256 return "Hello " + name;

257 }

(b) A function that is effectively untyped,
as all type annotations are any.

Figure 4.5: Two ways of assigning type annotations to a TypeScript function.

In this case, both candidate solutions in Figure 4.4 type check, so they
have zero type errors each. However, the solution in Figure 4.4a is re-
turned to the user, because () => string is more precise than the generic
Function type.

In this example, we walked through a type prediction procedure given
a simple program. Real programs, however, are generally more complex
and longer in token size, often resulting in wider, deeper trees that can
lead to combinatorial explosion. I discuss each component of OpenTau in
detail in the following sections, and describe how it handles very large
programs.

4.2 program typedness

Type prediction systems are typically evaluated on accuracy: predicted
types are compared to handwritten, ground truth type annotations [Hellen-
doorn et al., 2018; Wei et al., 2020b; Jesse, Devanbu, and Ahmed, 2021; Jesse,
Devanbu, and Sawant, 2022; Pradel et al., 2020]. However, this approach
requires labeled data and ignores program semantics—the predicted types
may not type check, requiring the programmer to manually resolve type
errors. In Chapter 3, I proposed type checking the generated program,
which does not require ground truth type annotations. However, trivial
type annotations (e. g., any) will always type check, but provide little bene-
fit to the programmer. For example, Figure 4.5 shows two assignments of
type annotations to a function. In Figure 4.5a, the type annotations have
high accuracy but fail to type check, while in Figure 4.5b, the function
type checks but is effectively untyped, because all type annotations are
any.

We would like to combine the strengths of both approaches and define
a metric that captures type information, but is also amenable to type
checking and does not require ground truth data. As a first step, we
propose a typedness metric that measures the degree to which a program
contains type information. Intuitively, this rewards type annotations that
are informative but restrictive, which allow the type checker to catch more
errors.

To compute the typedness score of a program, we:
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Table 4.1: Typedness scores for each type encountered. A type that is not in the
table is scored as 0.

Type annotation Score

unknown 1.0

any (or missing) 0.5

Function 0.5

undefined 0.2

null 0.2

1. count the number of undesirable type annotations, i. e., annotations
that are trivial or cause type errors;

2. assign a score to each annotation as specified in Table 4.1;

3. sum the scores; and finally

4. normalize the score by the number of types encountered.

The program score is normalized to a number between 0 and 1,000, where
lower scores are preferred. For example, a program with a score of 1,000

contains only unknown types, while a program with a score of 0 contains
only descriptive names, e. g., number or string[].

The typedness metric counts only leaf types in the abstract syntax
tree, i. e., the types that are being applied to the program. For example,
Array<any> is scored as 0.5, since any is the type argument.

4.3 tree-based program decomposition

4.3.1 Decomposing the Program

Programs are hierarchical in structure: the top-level code block contains
declarations and each declaration creates a code block that may contain
nested declarations, e. g., functions may contain nested functions and
classes may contain methods. OpenTau reuses this structure for type
prediction by representing the program as a tree, with the top level as the
root node, declarations as non-root nodes, nested declarations as child
nodes, and top-level variable declarations grouped into a single node
under the root. OpenTau also ensures that comments appearing directly
before a declaration are included in that declaration’s node, as comments
may contain additional context. For example, the comment (line 192) in
Figure 4.1a is included in the hello node.
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The tree representation also allows long-range context to be included in
a node. For instance, if a node represents a function definition, OpenTau

scans the parent node’s code block for statements that use that function.
Then, it generates a comment containing usage information and prepends
it to the node’s declaration. Thus, the prompt to the model contains the
full text of the node’s function definition, as well as a comment containing
usages of that function.

example . The hello function (line 193) in Figure 4.1a is used by
helloHelper on line 199. OpenTau generates the following comment and
includes it in the hello node:

258 /* Example usages of ’hello’ are shown below:

259 hello(name) + suffix; */

This comment provides additional context for both the parameter and
return type of hello, as it shows that the return value can be used with
the + operator, i. e., numeric addition or string concatenation. Furthermore,
the identifiers name and suffix suggest that they are strings, so the return
value of hello is likely a string that is concatenated with suffix.

4.3.2 Traversing the Tree

The tree representation also encodes dependencies between nodes: nested
declarations must be fully typed before their enclosing declarations, so
child nodes are visited before their parents. Additionally, a fully anno-
tated child node provides context when predicting types for the parent
node. This induces a bottom-up, level-order traversal that starts from the
deepest level of the tree and finishes at the root. For example, the tree
in Figure 4.1b is traversed in the following order: helloHelper, varNode1,
hello, helloGen, root.

To generate a candidate solution for a node, i. e., a fully typed node,
OpenTau uses a combination of type annotations predicted by an LLM that
supports FIM, and type annotations computed by the TypeScript compiler
through a process called local type inference. Local type inference is
sound (it produces types that will always type check) but conservative
(it may give up and produce any). OpenTau uses local type inference
for variable declarations (i. e., const, let, and var) and model-generated
predictions for everything else (e. g., function parameters and returns, and
class and interface properties). Local type inference is practical for variable
declarations because the compiler can inspect the right-hand side of the
assignment (if present).
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4.3.2.1 Visiting Leaf Nodes

The traversal starts at a leaf node, i. e., a node with no children. To create
a prompt for the model, OpenTau uses the TypeScript compiler to identify
type annotation sites in the node’s code block and inserts the special token
_hole_ into the first annotation site; passes the prompt to the model, which
returns a completion that contains the predicted type; updates the prompt
by replacing _hole_ with the type prediction; and repeats the process with
_hole_ in the next type annotation site of the updated prompt. This fills
in the type annotations from left to right.1

When using the model, its context window size is set to a fixed number
of tokens, which is the maximum number of tokens it can read. If the input
prompt is larger than the context window, OpenTau truncates the prompt
to fit into the context window, removing tokens from both the beginning
and end of the prompt. In practice, when the program is decomposed,
code blocks generally fit into the context window, so truncation is only
necessary for very large code blocks.2

The model can be configured to generate num_comps completions for a
single hole, and OpenTau can use those completions to generate num_comps

prompts for the second hole. However, this could lead to a combinatorial
explosion of num_compsn candidate solutions, where n is the number of
type annotation sites to be filled in. This is not practical, so OpenTau

takes a different approach: it asks the model to generate num_comps for the
first hole, but only one completion for subsequent holes. This results in
num_comps candidate solutions (each with n type annotations).

Once candidate solutions have been generated for a node, OpenTau

removes duplicates and stores the unique candidates in the node as meta-
data. Later, when the node’s parent is visited, the candidates will be
incorporated into the parent prompt.

4.3.2.2 Visiting Internal Nodes

An internal tree node, i. e., a node with children, can only be processed
after its children. This is because an internal node represents a code
block that contains other declarations, i. e., those represented by its child
nodes, whose candidate solutions must be included in the parent node’s
prompt. The child candidates provide additional context to the model
when predicting types for a code block, which may reference those child
declarations.

To incorporate a child node’s candidate solution into the parent node’s
prompt, OpenTau transplants type annotations. The key idea is that the

1 Some models, such as InCoder [Fried et al., 2023], support filling in multiple holes at a
time.

2 This applies to only 2% of functions in our evaluation dataset.
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parent node contains an unannotated version of the child node’s candidate
solution. Thus, OpenTau traverses over the candidate’s AST, building a
dictionary that maps identifiers to type annotations. Next, it traverses over
the corresponding AST in the parent node, using the dictionary to apply
type annotations to the appropriate identifiers. If a type annotation is
any or missing, the algorithm uses the TypeScript compiler’s local type
inference to compute a type annotation.

Because there may be multiple child nodes, each containing multiple
candidates, OpenTau takes all combinations of the child candidates to
create prompts for the parent node. However, this may lead to another
combinatorial explosion, so the number of combinations is limited to
stop_at, a user configurable parameter. OpenTau sorts the combinations
by their typedness score (Section 4.2); assigns the k-th combination a
weight from the Poisson distribution, with index = k and λ = 0.7; and
samples for stop_at combinations. The Poisson distribution skews the
sampling towards the beginning of the list, where the combinations have
better typedness scores. Once the combinations are sampled and the
prompts are created, OpenTau treats the parent node as a leaf node, and
applies the procedure described in Section 4.3.2.1.

example . If a node has two children with m1 and m2 candidate so-
lutions respectively, OpenTau generates m1m2 prompts for that node. If
m1m2 > stop_at, OpenTau samples stop_at combinations. Then, for each
prompt, it generates at most num_comps candidates, since the model may
return duplicates. This results in at most min(m1m2, stop_at)× num_comps

candidate solutions.

4.3.3 Ranking Candidate Solutions

The tree traversal continues until it reaches the root node, and returns at
most stop_at candidate solutions for the entire program. OpenTau runs
the TypeScript compiler’s type checker on each candidate and extracts
the number of type errors. If there are no type errors, then the solution
type checks. OpenTau additionally computes the typedness score for each
candidate solution.

Finally, OpenTau sorts the candidates by the number of type errors,
with ties broken by the typedness score. The best solution has the fewest
type errors—ideally zero—but the most type information. This solution is
presented to the user, with the other solutions available for inspection.
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⟨fim_prefix⟩ p ⟨fim_suffix⟩ s ⟨fim_middle⟩ m (PSM)

⟨fim_prefix⟩ ⟨fim_suffix⟩ s ⟨fim_middle⟩ p m (SPM)

Figure 4.6: p, s, and m are the encoded prefix, suffix, and middle spans.
⟨fim_prefix⟩ , ⟨fim_suffix⟩ , and ⟨fim_middle⟩ are special sentinel
tokens defined during the pre-training phase.

4.4 fine-tuning for fill in the type

We present fill in the type (FIT), adapting the technique of Bavarian et al.
[2022] and Fried et al. [2023] to fine-tune an LLM to predict TypeScript
type annotations. We use SantaCoder as the base model, an open-source
model with 1.1 billion parameters that was pre-trained on Python, Java-
Script, and Java for left-to-right and FIM code generation [Ben Allal et al.,
2023]. Then, we fine-tune SantaCoder using the TypeScript subset of the
near-deduplicated version of The Stack, a dataset of permissively licensed
source code [Kocetkov et al., 2022]. We set December 31, 2021 as the
training cutoff. Files in The Stack have multiple timestamps for different
events, and if the earliest timestamp is after the cutoff, we set the file aside
for evaluation and leave the remaining files for training. This results in a
dataset of 12.1 million TypeScript files, with over 1.1 billion lines of code,
including comments.

Following Bavarian et al. [2022], we split inputs into prefix, middle,
and suffix spans; however, we split on type annotation location indices
rather than arbitrary code sequences, and select a type annotation as the
middle span rather than a multi-line span of code. Furthermore, to closely
resemble the context format that the model sees at inference time, we
ensure type annotations are present in the prefix, but absent from the
suffix 90% of the time, i. e., we allow type annotations to be present in
the suffix 10% of the time to handle inputs that may be partially type
annotated.

Next, we transform the spans into prefix-suffix-middle (PSM) or suffix-
prefix-middle (SPM) formats, as defined in Figure 4.6. We set a 50/50

split for joint training on PSM and SPM, and train using a left-to-right
training objective. Intuitively, the model learns to connect the prefix to
the suffix with a single type annotation. Figure 4.7 shows an example of
transforming an input into PSM format.

training . We trained FIT for three days, using two NVIDIA H100

GPUs. We set the sequence length to 2,048 tokens and the learning rate
to 5 × 10

-5, following SantaCoder [Ben Allal, 2023]. We trained the model
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260 function sumThree(a: number, b: number, c: number): number {

261 return a + b + c;

262 }

(a) A fully typed program with four type annotations: three for function parameters and
one for the return type.

263 function sumThree(a: number, b: // prefix

264 number // middle

265 , c) {\n return a + b + c;\n} // suffix

(b) We select the second type annotation as the middle span, then split the code into prefix,
middle, and suffix spans. We remove type annotations from the suffix span.

266 ⟨fim_prefix⟩ function sumThree(a: number, b: ⟨fim_suffix⟩ , c) {

267 return a + b + c;

268 } ⟨fim_middle⟩

(c) The example transformed into PSM format for training. Although both SPM and PSM

are used for training, we only use PSM for inference.

Figure 4.7: An example function, split and transformed into the PSM context
format.

for 59,500 iterations, and roughly 487 million tokens were seen during
training.

inference . We employ the PSM transformation, which we observed to
perform better than SPM. We sample the middle sequence until reaching
an end-token or the maximum number of tokens.

4.5 evaluation

4.5.1 Dataset

As part of the evaluation, I contribute a new dataset for evaluating type
migration of TypeScript files. This new dataset satisfies certain properties.
For instance, dataset files should not be trivially incorrect (e. g., syntac-
tically invalid or requiring external modules) or trivial to migrate (e. g.,
files that are too short or have no type annotation sites). Focusing on files
rather than packages (as I did in Chapter 3) makes it easier to use the
dataset and avoids requiring an entire package to type check. Focusing
on TypeScript rather than JavaScript avoids code that cannot be migrated
without refactoring, but has the disadvantage of not reflecting the actual
practice of migrating JavaScript to TypeScript.
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Table 4.2: Factors and their weights, used to compute a quality score for filtering
the evaluation dataset.

Factor Weight

Function annotations 0.25

Variable annotations 0.25

Type definitions 0.11

Dynamic features 0.01

Trivial type annotations 0.11

Predefined type annotations 0.05

LOC per function 0.11

Function usages 0.11

I construct a dataset of 744 TypeScript files, totalling 77,628 lines of
code (excluding blanks and comments). I derive this dataset by filtering
the near-deduplicated version of The Stack [Kocetkov et al., 2022], which
contains roughly 12.8 million TypeScript files. First, I remove files that
depend on external modules and do not type check: this guarantees that
all files in the dataset have valid type annotations, and that all files are
actually TypeScript and not other files that were incorrectly classified.
Next, I remove:

• files that have no type annotation sites (these files are typically only
data or comments and will trivially type check);

• have fewer than 50 lines of code (small files are often trivial and
uninteresting to evaluate);

• have no functions (these files are typically data or contain only type
definitions, which provide little context for type prediction besides
the names of identifiers); or

• average fewer than five lines of code per function (short functions
are often trivial, e. g. getters and setters).

These filtering steps reduce the dataset to 21,464 files.
Then, I compute a weighted quality score for each file, with the weights

shown in Table 4.2. The score is based on several factors, most of them
being density metrics that normalize by the number of tokens in a file, to
avoid bias from very large files. These metrics are:

• higher function and variable annotation density (so files have more
type annotation sites);
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269 export interface IParseOptions {

270 filename?: string;

271 startRule?: string;

272 tracer?: any;

273 [key: string]: any;

274 }

(a) The original interface, which defines
an interface with three properties and
an index signature.

275 export interface IParseOptions {

276 filename?;

277 startRule?;

278 tracer?;

279 // what goes here?

280 }

(b) Removing type annotations; however,
it is not clear how to handle the index
signature.

Figure 4.8: A TypeScript file that was removed from the dataset, because the type
definition contains an index signature.

• higher type definition density (so there are more user-defined types);

• fewer occurrences of dynamic features like eval (because these fea-
tures are difficult to migrate);

• lower trivial types density (so the dataset contains fewer annotations
with little type information);

• lower predefined types density (to encourage more user-defined
types);

• more lines of code per function (to encourage more complex files);
and

• more function usages (since function call sites provide additional
context).

After computing each metric separately, I convert them to standard scores
(i. e., the number of standard deviations above or below the mean) and
normalize to a value between 0 and 1. Then, I use the weights to compute
a single, combined quality score, and remove any file that is one or more
standard deviations below the mean score. This leaves 17,254 files in the
dataset.

To minimize test-train overlap, I apply the December 31, 2021 cutoff,
consistent with the training cutoff used for fine-tuning. This results in
867 files after the cutoff. Finally, I process the filtered, high-quality Type-
Script dataset to remove type annotations. However, this process does not
always succeed, in particular, when types use index signatures. For example,
Figure 4.8 declares a type that uses an index signature on line 273: this
means that values of the IParseOptions type can be indexed with a string,
with the result having type any. However, it is not clear how this index
signature can be removed, nor how type prediction should fill in an index
signature when there is nothing to annotate (line 279). Therefore, I remove
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files that use index signatures. The results in the final evaluation dataset
of 744 files.

4.5.2 Experiments

We evaluate OpenTau to determine the effectiveness of FIT and its tree-
based program decomposition, using three metrics: the percentage of files that
type check, the average typedness score for files that type check, and the
average number of type errors. We compare two SantaCoder models: one
that has been fine-tuned for TypeScript code generation (SantaCoder-TS),
and one that has been fine-tuned for FIT for TypeScript (SantaCoder-FIT).
We compare OpenTau’s program decomposition with a baseline that
treats the entire file as a single tree node. For all experiments, we set
temperature = 0.75, stop_at = 400, and num_comps = 3. We use a default
context window size of 640 tokens, but run additional experiments on
context window sizes of 160, 320, and 1280 tokens.

OpenTau and the baseline experiments use SantaCoder to infer type
annotations for function parameters, return types, class and interface
fields, and lambda functions. However, the completion that SantaCoder
returns is parsed to extract the first plausible type annotation, e. g., if
the completion is stringstringstring, the type parser returns string.
Variable declarations are handled differently: OpenTau uses TypeScript’s
local type inference to compute their type annotations, but they are ignored
in the baseline experiments, which is equivalent to treating them as any.

Inference on a single hole takes an average 1.6 seconds on an NVIDIA
RTX 2080 Ti GPU. A full experiment can take 10–30 hours on eight 2080 Tis.
Smaller context window sizes and using OpenTau’s program decomposi-
tion can significantly decrease the execution time.

Table 4.3 shows our results. OpenTau with usages significantly outper-
forms the baseline: 47.4% of files type check (14.5% absolute improvement)
with a much lower typedness score. We discuss our experiments below.

fill in the type . We run the baseline configuration (no program
decomposition) to compare the effectiveness of FIT. SantaCoder-FIT out-
performs SantaCoder-TS in the percentage of files that type check (32.9%
vs. 39.9%), while maintaining a similar average typedness score.

context window size . To evaluate the impact of context window
size, we run additional experiments with SantaCoder-FIT on window sizes
of 160, 320, and 1,280. We observe that a larger context window size results
in more files that type check, while maintaining similar average typedness
scores.
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Table 4.3: Experimental results of evaluating OpenTau. We measure files that type
check, which is more rigorous than measuring individually correct type
annotations. The number of files that type check is reported, out of a
dataset of 744 files. All numbers are rounded to the nearest tenth.
TS = SantaCoder-TS, i. e., fine-tuned on TypeScript but not FIT

FIT = SantaCoder-FIT, i. e., fine-tuned on TypeScript for FIT

Configuration Window Type checks Typedness
Type
errors

TS baseline 640 245 (32.9%) 200.7 4.7

FIT baseline 1,280 353 (43.3%) 210.0 4.1

FIT baseline 640 297 (39.9%) 200.9 5.2

FIT baseline 320 248 (33.3%) 200.7 5.1

FIT baseline 160 178 (23.9%) 201.2 6.3

FIT baseline, usages 640 280 (37.6%) 206.0 4.9

FIT OpenTau, no usages 640 274 (36.8%) 168.4 3.7

FIT OpenTau, usages 640 353 (47.4%) 154.6 3.3

tree-based program decomposition. We compare OpenTau’s
program decomposition to the baseline, and show that it outperforms the
baseline in all metrics. In particular, the typedness score is much lower,
suggesting that OpenTau is successful in searching for more precise type
annotations.

usage comments . Next, we compare configurations with usage com-
ments enabled and disabled. Recall that when predicting types for func-
tions, OpenTau searches the program for usages of that function, generates
a comment containing those usage statements, and prepends it to the func-
tion’s prompt (Section 4.3.1). OpenTau without usages performs similar
to the baseline with usages, and both perform slightly worse than the
baseline without usages. However, enabling usages for OpenTau results in
the largest jump in performance, while enabling usages for the baseline
results in diminished performance. This experiment shows that long-range
context is helpful for type prediction.

typescript compiler . We compare our best OpenTau configuration
(which uses FIT and tree-based program decomposition on a context win-
dow size of 640 tokens) to the TypeScript compiler’s builtin type inference.
Table 4.4 shows the results. Although the TypeScript compiler allows sig-
nificantly more files to type check, its results have a much higher (worse)
typedness score, more type errors, and more trivial type annotations.
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Table 4.4: Comparing the TypeScript compiler to OpenTau, on the evaluation
dataset with 744 files.
Errors = average number of type errors per file
# = average number of trivial annotations per file
% = percentage of trivial type annotations

Trivial

System Type checks Typedness Errors # %

tsc 553 (74.3%) 309.4 6.0 13.1 29.4

OpenTau 353 (47.4%) 154.6 3.3 4.3 10.4

Table 4.5: Comparing the effectiveness of the type parser on both models. All
experiments were run with a context window of 640 tokens, and on the
baseline, i. e., without program decomposition.
TS = SantaCoder-TS, i. e., fine-tuned on TypeScript but not FIT

FIT = SantaCoder-FIT, i. e., fine-tuned on TypeScript for FIT

Type checks Errors

Configuration ✓ # % Typedness Type Syntax

TS No parser 1 50 2.0 0.0 121.2 42.1

FIT No parser 25 50 50.0 230.0 4.6 0.2

TS Parser 245 744 32.9 200.7 4.7 0.0

FIT Parser 297 744 39.9 200.9 5.2 0.0

These trivial type annotations, i. e., any, any[], or Function, exclude the
ones that were already present in the original, type-annotated files, since
those annotations were handwritten and likely necessary to ensure the file
type checks.

type parser . Finally, we conduct a small experiment that compares
SantaCoder-TS and SantaCoder-FIT with the type parser disabled, on
a random sample of 50 files from the dataset. Table 4.5 shows that FIT

significantly helps with predicting syntactically valid type annotations,
and is effective without the type parser: 50% of files type check with an
average rate of 0.2 syntax errors per file, compared to 2% of files that
type check and 42.1 syntax errors. However, the type parser is helpful,
as FIT can still produce syntax errors, and it practically eliminates all
syntax errors—the results round to 0.00, even with two decimal places of
precision.
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281 function sum_list(l: _hole_ ) {

282 let sum = 0;

283 for (let i=0;i<l.length;i++) {

284 sum += l[i];

285 }

286

287 return sum;

288 }

(a) A function where _hole_ should be
filled in with a type annotation.

289 any[]): number {

290 if (l.length === 0) {

291 throw ’Empty list!’;

292 }

293 if (l.length === 1) {

294 return l[0];

295 }

296 return sum

(b) The “type annotation” provided by a
FIM model.

Figure 4.9: An example of how FIM generates extraneous code. The expected type
annotation is number[].

4.5.3 Case Studies

4.5.3.1 Fill in the Type

Figure 4.9 shows an example of how FIM performs poorly, which mo-
tivates our FIT method. Figure 4.9a is an input function where _hole_

should be replaced by a type annotation, which is expected to be number[].
However, FIM generates the code in Figure 4.9b: it generates the imprecise
type any[], along with most of a body function. We require a model that
fills in only the type annotation.

4.5.3.2 Evaluation Dataset

Constructing the evaluation dataset involved two filtering stages. First,
undesirable files were excluded, then a quality score was computed and
used to exclude lower quality files. Figure 4.10 shows examples of files
that were excluded at the first stage. These include files that are entirely
commented out (Figure 4.10a), files that have no type annotation sites
(Figure 4.10b), files with trivial functions (Figure 4.10c), and files with no
functions (Figure 4.10d).

In the second stage of filtering, lower quality files are removed. Fig-
ure 4.11 shows an example of a file with a low quality score: it has only
one type annotation location with type annotation any (line 326), and only
one function (lines 327–363), which is a constructor with no parameters.
The majority of the file is a single configuration object (lines 328–362).
On the other hand, Figure 4.12 shows an example of a file with a high
quality score: it defines a type (lines 365–369) that is used in two locations
(lines 381 and 394), four functions with multiple function parameters
(lines 371, 389, 397 and 405), and one usages of the splitKey function
(line 406).
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297 //// global app config

298 //declare type appConfigType = {

299 // baseUrl: string

300 // debounceTime: number

301 //}

(a) A TypeScript file with zero lines of code (and therefore zero type annotation sites),
because everything is commented out.

302 export default {

303 group: "typography",

304 pagination: {

305 currentPage: 2,

306 prevPagePath: "/typography/page/1",

307 nextPagePath: "/typography/page/3",

308 hasNextPage: true,

309 hasPrevPage: true,

310 },

311 };

(b) A TypeScript file that exports constants, but has zero type annotation sites, so there is
nothing to migrate.

312 export const TabIcons = [

313 ’tab’, ’code-braces’, ’tags’, ’target’

314 ];

315

316 export function getTabIcon(tabType: number): string {

317 return TabIcons[tabType];

318 }

(c) A short TypeScript file with an even shorter function that is not doing anything
interesting, and has very little context for type prediction.

319 export interface Log {

320 error: (text: any) => void

321 warn: (text: any) => void

322 info: (msg: any, ...optionalParams: any[]) => void

323 log: (text: any) => void

324 }

(d) A TypeScript file that defines an interface with several type annotation sites; however,
there are no function bodies and very little context for type prediction. In particular, it
is not obvious what types should annotated for error, warn, info, and log.

Figure 4.10: Files that were excluded from the dataset by the thresholds.
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325 export class EventsConfig {

326 public config: any = {};

327 constructor() {

328 this.config = {

329 items: [

330 {

331 id: 1,

332 name: ’New Year Party’,

333 image: ’./assets/images/background/horizontal/1.jpg’,

334 date: ’04/14/2020 00:00:00’,

335 price: 100,

336 address: ’2102 Tennessee Avenue, Plymouth MI - 48170’,

337 phone: ’734-637-0374’,

338 email: ’y65nl6lt7pf@payspun.com’,

339 description: ’’ // omitted string

340 },

341 {

342 id: 2,

343 name: ’Dance with DJ Nowan’,

344 image: ’./assets/images/background/horizontal/2.jpg’,

345 date: ’12/31/2019 00:00:00’,

346 address: ’2102 Tennessee Avenue, Plymouth MI - 48170’,

347 phone: ’734-637-0374’,

348 email: ’y65nl6lt7pf@payspun.com’,

349 description: ’’ // omitted string

350 },

351 {

352 id: 3,

353 name: ’Move You\’s Legs’,

354 image: ’./assets/images/background/horizontal/3.jpg’,

355 date: ’12/31/2019 00:00:00’,

356 address: ’2102 Tennessee Avenue, Plymouth MI - 48170’,

357 phone: ’734-637-0374’,

358 email: ’y65nl6lt7pf@payspun.com’,

359 description: ’’ // omitted string

360 }

361 ]

362 };

363 }

364 }

Figure 4.11: A TypeScript file with a low quality score, because it has only one
type annotation site (with type annotation any), and the majority of
the file is data.
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365 export type EntityId = {

366 prefix: string;

367 id: string;

368 key: string;

369 };

370

371 export const generateEntityId = (prefix: string, length: number) => {

372 const base62Chars =

373 ’0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz’;

374 let id = ’’;

375

376 for (let i: number = 0; i < length; i++) {

377 const random = Math.floor(Math.random() * 62);

378 id = id.concat(base62Chars[random]);

379 }

380

381 const entityId: EntityId = {

382 prefix: prefix,

383 id: id,

384 key: ‘${prefix}:${id}‘

385 };

386 return entityId;

387 };

388

389 export const getEntityIdfromID = (prefix: string, id: string) => {

390 return {

391 prefix,

392 id,

393 key: ‘${prefix}:${id}‘

394 } as EntityId;

395 };

396

397 const splitKey = (key: string) => {

398 const [prefix, id] = key.split(’:’);

399 return {

400 prefix,

401 id

402 };

403 };

404

405 export const getIdFromKey = (key: string) => {

406 const splittedKey = splitKey(key);

407 return splittedKey.id;

408 };

Figure 4.12: A TypeScript file with a high quality score, because it defines a type,
several functions, and has a call to one of those functions (splitKey).
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4.5.3.3 Tree-based Program Decomposition

Figure 4.13 compares a prediction given by the baseline (with a context
window of 160 tokens) to an OpenTau prediction (tree-based program
decomposition with usages). The baseline predicts number for the min

parameter (line 410), which seems reasonable for a parameter that is
likely to be a “minimum,” but OpenTau correctly predicts that min has
type number[] (line 423). The baseline also predicts ZPoint as the return
type (line 413), while OpenTau correctly predicts void (line 426). Finally,
the baseline skips the type annotations for local variables x, y, and z

(lines 415–417), as it is unlikely to predict the correct types from the given
context. On the other hand, OpenTau invokes the TypeScript compiler,
which deduces that morton3 returns number, so the local variables are
correctly annotated (lines 428–430).

4.5.3.4 Usage Comments

Figure 4.14 compares a prediction given by OpenTau, without and with
usages. There is a critical usage of the _preparePaper method in an ad-
jacent method, as the any[] type annotation is given to the return value
of _preparePaper. Furthermore, the second argument to _preparePaper

is a call to find, which returns an array. This information is not avail-
able in Figure 4.14a, which does not have a usages comment, so the
model predicts number for the firstYFold parameter and a return type of
boolean (line 439). On the other hand, the usages comment is available
in Figure 4.14b (lines 443–445), so the model predicts number[] for the
firstYFold parameter and a return type of number[][] (line 448). Indeed,
the body of _preparePaper accesses firstYFold as an array (lines 462

and 463).

4.6 summary

machine learning and search . LLMs have shown promise in code
generation tasks, but they are limited by not being able to take advantage
of program semantics. One way to mitigate this is by combining machine
learning and search: the model generates a probability distribution of type
annotations, and an algorithm searches for the “best” type annotation.
In OpenTau’s case, this search finds the type annotations with the best
typedness score, i. e., the annotations with the most type information. The
experiments show that this search is successful in returning solutions that
have a higher typedness score, and more importantly, solutions that have
fewer trivial type annotations than would be inferred by the TypeScript
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409 public toPoint(

410 min: number ,

411 step: number,

412 buffer: Uint8Array ,

413 pos: number): ZPoint

414 {

415 let x = this.morton3(this.lo, this.hi >>> 1);

416 let y = this.morton3(this.lo >>> 1, this.hi >>> 2);

417 let z = this.morton3(/* omitted */, this.hi >>> 3);

418 buffer[pos + 0] = (x + min[0]) * step;

419 buffer[pos + 1] = (y + min[1]) * step;

420 buffer[pos + 2] = (z + min[2]) * step;

421 }

(a) Baseline type prediction. Note that baseline type prediction skips the local variable
declarations x, y, and z.

422 public toPoint(

423 min: number[] ,

424 step: number,

425 buffer: number[] ,

426 pos: number): void

427 {

428 let x: number = this.morton3(this.lo, this.hi >>> 1);

429 let y: number = this.morton3(this.lo >>> 1, this.hi >>> 2);

430 let z: number = this.morton3(/* omitted */, this.hi >>> 3);

431 buffer[pos + 0] = (x + min[0]) * step;

432 buffer[pos + 1] = (y + min[1]) * step;

433 buffer[pos + 2] = (z + min[2]) * step;

434 }

435 // morton3 has signature:

436 // public morton3(lo: number, hi: number): number;

(b) Type prediction with OpenTau’s tree-based program decomposition. OpenTau uses
the TypeScript compiler to infer type annotations for the local variable declarations x,
y, and z.

Figure 4.13: Comparing the baseline to OpenTau: type prediction for toPoint, a
class method. Type annotations that are different are highlighted.
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437 private _preparePaper(

438 coords: number[],

439 firstYFold: number ): boolean

440 {

441 // omitted

442 }

(a) Type prediction without usages. OpenTau does not predict the correct type annotation
for the firstYFold parameter.

443 /* Example usages of ’_preparePaper’ are shown below:

444 let paper: any[] =

445 this._preparePaper(coords, folds.find(f => f[0] === ’y’)); */

446 private _preparePaper(

447 coords: number[][],

448 firstYFold: number[] ): number[][]

449 {

450 let maxY: number = 0; let maxX: number = 0;

451 for (const coord of coords) {

452 if (coord[1] > maxY) { maxY = coord[1]; }

453 if (coord[0] > maxX) { maxX = coord[0]; }

454 }

455 const paper: any[] = [];

456 for (let y: number = 0; y <= maxY; y++) {

457 paper.push(new Array(maxX + 1).fill(false));

458 }

459 for (const coord of coords) {

460 paper[coord[1]][coord[0]] = true;

461 }

462 if (paper.length <= (firstYFold[1]) * 2) {

463 const toAdd: number = firstYFold[1] * 2 - paper.length + 1;

464 for (let i: number = 0; i < toAdd; i++) {

465 paper.push(new Array(maxX + 1).fill(false));

466 }

467 }

468 return paper;

469 }

(b) Type prediction with usages. OpenTau identifies a usage of the _preparePaper method,
and uses it to provide additional context to the model.

Figure 4.14: Comparing OpenTau without and with usages, when predicting
types for _preparePaper, a class method. The relevant type annota-
tion is highlighted.
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compiler. I leave alternate definitions of the typedness metric and alternate
search algorithms to future work.

program decomposition. If a program is too large to fit into the
context window, decomposing the program into smaller functions can
help. This allows OpenTau to migrate a program one function at a time,
and use a fully type-annotated function as context when migrating another
function. This strategy allows OpenTau to use the structure and implicit
dependencies that already exist in a program. Additionally, program
decomposition allows OpenTau to identify all call sites of a function and
uses this to generate usage comments, which serve as additional context.
The experiments show that usage comments are effective, and suggest that
other kinds of context could be explored in future work.

fine-tuning for type prediction. Fill in the middle (FIM) is a
natural fit for type prediction, since it allows generating type annotations
in the middle of a program. However, FIM is trained for general-purpose
code generation, and not type prediction. By using a fill in the type (FIT)
training procedure that is aware of type annotations, the experiments
show that this approach significantly improves a model’s ability to infill
syntactically valid type annotations. I believe that when using a model
for a specific task, it is worthwhile to consider whether that model can be
fine-tuned for that task, instead of relying on the model’s general-purpose
capabilities.





5
G E N E R AT I N G T Y P E D E F I N I T I O N S

Up until now, all prior work has focused solely on type annotation prediction
and the problem of type definition generation has not been studied. In
this chapter, I describe the type definition generation problem and my
approach to solving it by fine-tuning an LLM.

To motivate the problem, consider the following example:

470 function dist(p1, p2) {

471 const dx = p2.x - p1.x;

472 const dy = p2.y - p1.y;

473 return Math.sqrt(dx*dx + dy*dy);

474 }

This function takes two points, p1 and p2, and computes the distance be-
tween those points. A type prediction system might suggest the following
annotations, which are highlighted:

475 function dist(p1: Point , p2: Point ): number {

476 const dx = p2.x - p1.x;

477 const dy = p2.y - p1.y;

478 return Math.sqrt(dx*dx + dy*dy);

479 }

This is a reasonable and correct type annotation;1 however, the code does
not type check because Point is not defined. To fully migrate this function,
the type definition needs to either be manually defined by a programmer,
or automatically generated, e. g., by an LLM. The type definition could be
a class definition (which also requires defining a constructor), an interface
definition, or a type alias for an object type:

480 // Class definition

481 class Point {

482 x: number;

483 y: number;

484 constructor(x: number, y: number) {

485 this.x = x;

486 this.y = y;

487 }

488 }

1 Another possible type annotation for p1 and p2 is {x: number, y: number}. This annota-
tion type checks successfully, but is more verbose than Point.

73
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498 ⟨commit_before⟩ function dist(p1, p2) {

499 const dx = p2.x - p1.x;

500 const dy = p2.y - p1.y;

501 return Math.sqrt(dx*dx + dy*dy);

502 }

503 ⟨commit_msg⟩ Add type annotations

504 ⟨commit_after⟩

Figure 5.1: A prompt used at inference time to add type annotations to dist, with
the instruction highlighted.

489

490 // Interface definition

491 interface Point {

492 x: number;

493 y: number;

494 }

495

496 // Type alias

497 type Point = {x: number, y: number};

Generating type definitions is a much more difficult problem than pre-
dicting type annotations, because an LLM has fewer constraints, i. e., it
must generate significantly more code than a single type annotation. There-
fore, when training an LLM to generate type definitions, it is important to
determine which dataset and training format work best.

5.1 approach

My approach is to fine-tune one of the smaller StarCoderBase models,
such as StarCoderBase-7B, similar to how FIM is trained. StarCoderBase is
an open code LLM, meaning its parameters and training data are openly
available, and it has been trained on a variety of formats, which extends its
capabilities. For example, StarCoderBase was trained on Git commit data
using a format with the special tokens ⟨commit_before⟩ , ⟨commit_after⟩
and ⟨commit_msg⟩ . These tokens denote code before a commit, code after
a commit, and the commit message describing the changes, which allows
the model to learn to edit code by following natural language instructions.
Reusing this training format with StarCoderBase is more practical than
than training a new model from scratch or fine-tuning StarCoderBase on a
different format.

To use this format at inference time, StarCoderBase is provided a prompt
that consists of ⟨commit_before⟩ , the original code to edit, ⟨commit_msg⟩ ,
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505 ⟨commit_before⟩ function dist(p1, p2) {

506 const dx = p2.x - p1.x;

507 const dy = p2.y - p1.y;

508 return Math.sqrt(dx*dx + dy*dy);

509 }

510 ⟨commit_msg⟩ Add type annotations and interfaces

511 ⟨commit_after⟩ interface Point {

512 x: number;

513 y: number;

514 }

515

516 function dist(p1: Point, p2: Point): number {

517 const dx = p2.x - p1.x;

518 const dy = p2.y - p1.y;

519 return Math.sqrt(dx*dx + dy*dy);

520 }

Figure 5.2: A training example for single-step migration.

an instruction to edit that code, and finally ⟨commit_after⟩ . The code
generated after ⟨commit_after⟩ is then extracted and taken as the result
of editing the original code. Figure 5.1 shows a prompt that is used to add
type annotations to the dist function: the original function is between
the ⟨commit_before⟩ and ⟨commit_msg⟩ tokens on lines 498–502, the edit
instruction is after the ⟨commit_msg⟩ token on line 503, and the model
generates code after the ⟨commit_after⟩ token on line 504.

5.1.1 Single-step migration

The Git commit format can be used with StarCoderBase to migrate a pro-
gram in a single step, from untyped code to fully typed code. At inference
time, the prompt will be similar to Figure 5.1, but with the instruction
Add type annotations and interfaces . From informal testing with a

StarCoderBase model that had not been fine-tuned, I found this instruction
performed better than alternatives that mentioned classes or TypeScript.

Figure 5.2 shows a training example for this approach, with both the
code before and after the change. To construct a training example, I start
with a TypeScript program that has type definitions and type annotations:
this will be the code after the change, so I mark it with ⟨commit_after⟩
(lines 511–520). Next, I delete types to get an untyped program, i. e., the
code before the change, and mark it with ⟨commit_before⟩ (lines 505–509).
Deleting types means removing non-class type definitions, type annota-
tions, and type assertions; class definitions are preserved because they
contain additional non-type code in methods. Finally, I use the instruction
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Add type annotations and interfaces and mark it with ⟨commit_msg⟩
(line 510). This format trains the model to associate the fully typed code
with the untyped version and an instruction to add type annotations and
interfaces.

5.1.2 Multi-step migration

An alternative migration is to take a multi-step approach that first adds
type annotations and then adds type definitions one at a time. For example,
consider the two following functions:

521 function circleArea(c) {

522 return Math.PI * c.radiuis * c.radius;

523 }

524 function rectangleArea(r) {

525 return r.width * r.height;

526 }

This code is given to the model with an instruction to add type annotations:

527 ⟨commit_before⟩ function circleArea(c) {

528 return Math.PI * c.radiuis * c.radius;

529 }

530 function rectangleArea(r) {

531 return r.width * r.height;

532 }

533 ⟨commit_msg⟩ Add type annotations

534 ⟨commit_after⟩

The model generates code after the ⟨commit_after⟩ token, adding the
Circle and Rectangle type annotations, which are highlighted:

535 function circleArea(c: Circle ) {

536 return Math.PI * c.radius * c.radius;

537 }

538 function rectangleArea(r: Rectangle ) {

539 return r.width * r.height;

540 }

The types Circle and Rectangle are not defined, so the next step is to add
those type definitions, one at a time:

541 ⟨commit_before⟩ function circleArea(c: Circle) {

542 return Math.PI * c.radius * c.radius;

543 }

544 function rectangleArea(r: Rectangle) {

545 return r.width * r.height;
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546 }

547 ⟨commit_msg⟩ Add a type alias or interface for Circle

548 ⟨commit_after⟩

The instruction specifically mentions “type alias” and “interface,” and
does not mention “class,” because that could lead the model to generate a
class with extraneous methods. In this example, the model generates an
interface definition for Circle, but Rectangle is still undefined and now
Point is a new type annotation that is undefined:

549 interface Circle {

550 position: Point ;

551 radius: number;

552 }

553

554 function circleArea(c: Circle) {

555 return Math.PI * c.radius * c.radius;

556 }

557 function rectangleArea(r: Rectangle ) {

558 return r.width * r.height;

559 }

To finish migrating the example, the model needs to be instructed to
generate type definitions for Point and Rectangle, as well as any further
types that might be introduced. The model can be repeatedly invoked with
a new instruction for each type to be generated until all type definitions
are present or a limit has been reached, which avoids infinite loops.

This strategy requires fine-tuning StarCoderBase on a mix of two dif-
ferent training formats, which are shown in Figure 5.3. The first format
(Figure 5.3a) trains the model to add type annotations, while the second
format (Figure 5.3b) trains the model to add a single type definition.

To construct a training example, I again start with a TypeScript program.
If the program has no type definitions, then I use the first training format
(Figure 5.3a): the original program will be the code after adding type
annotations, so I mark it with ⟨commit_after⟩ (lines 567–572). Next, I
delete type all type annotations to get the code before the change, and
mark it with ⟨commit_before⟩ (lines 560–565). Finally, I use the instruction
Add type annotations and mark it with ⟨commit_msg⟩ (line 566).

If the original program contains type definitions, then I use the second
training format (Figure 5.3b). First, I randomly delete some of the type
definitions—this is so the training example resembles what the model
would observe in practice, where some of the type definitions may be
missing. For example, lines 585–600 shows code where the type definitions
for Rectangle and Circle have been inserted, but the type definition for
Point is still missing. Next, I select one of the present type definitions,
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560 ⟨commit_before⟩ function circleArea(c) {

561 return Math.PI * c.radius * c.radius;

562 }

563 function rectangleArea(r) {

564 return r.width * r.height;

565 }

566 ⟨commit_msg⟩ Add type annotations

567 ⟨commit_after⟩ function circleArea(c: Circle) {

568 return Math.PI * c.radius * c.radius;

569 }

570 function rectangleArea(r: Rectangle) {

571 return r.width * r.height;

572 }

(a) Adding type annotations.

573 ⟨commit_before⟩ interface Circle {

574 position: Point;

575 radius: number;

576 }

577

578 function circleArea(c: Circle) {

579 return Math.PI * c.radius * c.radius;

580 }

581 function rectangleArea(r: Rectangle) {

582 return r.width * r.height;

583 }

584 ⟨commit_msg⟩ Add a type alias or interface for Rectangle

585 ⟨commit_after⟩ interface Rectangle {

586 position: Point;

587 width: number;

588 height: number;

589 }

590 interface Circle {

591 position: Point;

592 radius: number;

593 }

594

595 function circleArea(c: Circle) {

596 return Math.PI * c.radius * c.radius;

597 }

598 function rectangleArea(r: Rectangle) {

599 return r.width * r.height;

600 }

(b) Adding a type definition.

Figure 5.3: Training examples for multi-step migration.
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Table 5.1: Summary of StenoType training datasets.

Dataset Examples LOC Tokens Size

OpenTau training 9.7M 564M 7.4 B 26.4 GB

StenoType training 7.2M 984M 12.1 B 44.7 GB

StenoType annotations 5.3M 700M 8.0 B 28.8 GB

StenoType definitions 1.9M 284M 4.1 B 15.9 GB

e. g., Rectangle, and delete it to get the code before, which is shown on
lines 573–583. Finally, I add an instruction on line 584 that explicitly refers
to Rectangle, i. e., Add a type alias or interface for Rectangle .

5.2 training

Based on preliminary experiments, I fine-tuned StarCoderBase-7B on
the multi-step migration format to produce the StenoType model for
migrating JavaScript to TypeScript. Smaller StarCoderBase models and
the single-step migration format were not as effective at generating type
definitions. To fine-tune, I used a training dataset based on the one used
to train OpenTau (Section 4.4). That dataset consists of the TypeScript files
from near-deduplicated version of The Stack [Kocetkov et al., 2022], with
a training cutoff of December 31, 2021; files in The Stack have multiple
timestamps for different events, so if the earliest timestamp is after the
cutoff, I exclude it from training. Furthermore, I exclude files that are
syntactically invalid. This results in a dataset of 9.67 million files with 564

million lines of code (excluding comments and whitespace), or 7.38 billion
tokens taking up 26.4 GB of storage.

However, this dataset contains only TypeScript files, so it must be trans-
formed into the multi-step Git commit format for training. This transfor-
mation can be done online, during training, or it can be done offline, ahead
of time, which speeds up training at the cost of requiring more disk space.
I chose the latter and preprocessed the dataset: the multi-step migration
dataset contains 12.1 billion tokens taking up 44.7 GB of storage. Within
the multi-step migration dataset, 73.4% of files (which make up 66.2% of
tokens) contain no type definitions and are used to train the model to add
type annotations, while the remaining 26.6% of files (which comprise 33.8%
of tokens) are used to train the model to add type definitions. Table 5.1
summarizes the training datasets.

I trained StenoType for 28 hours, using four NVIDIA A100 80GB GPUs.
The sequence length was set to 8,192 tokens, i. e., the full context window
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size, with multiple training examples concatenated to improve efficiency.
The batch size was set to 1, gradient accumulation to 4 steps, and learning
rate to 2.5 × 10

-5. Additionally, I train with the Low Rank Adaptation
(LoRA) technique [Hu et al., 2022], with a rank of 16, a scaling factor
of 32, and a dropout probability of 0.05. I trained for 1,000 steps, or
approximately 0.01 epochs, and roughly 131 million tokens were seen
during training.

5.3 evaluation

5.3.1 Dataset

I use two datasets to evaluate StenoType, which I call TS-Sourced and
JS-Sourced. TS-Sourced is based on the TypeScript files I used to evaluate
OpenTau (Section 4.5.1), while JS-Sourced is based on the JavaScript
packages I used to evaluate TypeWeaver (Section 3.3.1).

Constructing TS-Sourced is similar to the process I used for the Open-
Tau dataset: I start with TypeScript files from the near-deduplicated version
of The Stack and keep only the files that are syntactically valid and type
check. Next, I filter and keep files that:

• have at least one type annotation site;

• have at least one (non-class) type definition;

• have at least 50 lines of code (excluding comments and whitespace),
outside of type definitions;

• have at least one function;

• have at least five lines of code per function;

• have at most 4,096 tokens; and

• are after the December 31, 2021 training cutoff.

This leaves 338 files after filtering, which I sample to get 50 files. The
filtering process removes files that cannot be migrated (e. g., because they
are not valid TypeScript), files that can be trivially migrated (e. g., because
they require no type annotations or no type definitions), and files that are
too simple (e. g., too short, have no functions, or have trivial functions).
The 4,096 token limit ensures that the full prompt and output (which
roughly doubles the number of tokens from the original TypeScript file)
can fit into StenoType’s 8,192-token context window. Finally, taking files
after the training cutoff minimizes test/train overlap.
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As the final step, I remove all types to get the untyped code for evalua-
tion. Specifically, I remove type annotations, type assertions (i. e., casts),
type aliases, and type interface definitions. I do not remove class definitions:
although a class definition is a type, it also defines fields and methods,
and removing those would fundamentally change the file being evaluated.
However, I still remove type annotations from class definitions.

JS-Sourced is a more challenging dataset than TS-Sourced for two
reasons. First, TS-Sourced is built from TypeScript files with the types
removed, which means a migration to typed code exists. On the other
hand, JS-Sourced is built from JavaScript files, with no guarantee that
the files can be typed. Second, TS-Sourced is built from single files,
while JS-Sourced is built from multi-file projects. This introduces inter-file
dependencies.

To construct JS-Sourced, I start with the TypeWeaver dataset, which
consists of 506 JavaScript packages from the top 1,000 most downloaded
packages from the npm Registry (as of August 2021). These packages
contain the original source code from GitHub, with testing code removed
and type declarations (.d.ts) from DefinitelyTyped included. To prepare
this dataset for evaluating StenoType, I perform additional processing
and filtering. First, because StenoType is designed for single-file inputs but
the TypeWeaver dataset consists of multi-file packages, I use Rollup [Rollup
contributors, 2015] to compile a multi-file package into a single file. Ad-
ditionally, I implemented a Rollup plugin to insert the name of each
constituent file as a comment in the output, preceding the contents of
that file, in the output; this will be useful during evaluation to map lines
from the output back to the original files. Second, similar to TS-Sourced

dataset, I filter and keep files that:

• have at least one type annotation site;

• have at least 50 lines of code (excluding comments and whitespace);

• have at least one function;

• have at least five lines of code per function; and

• have at most 4,096 tokens.

This leaves 177 packages, which I sample to get 50 packages for the final
dataset. Unlike TS-Sourced, I do not remove files that fail to type check:
this is because most JavaScript code will fail to type check with the Type-
Script compiler,2 especially before adding type annotations. Additionally,

2 Out of the 506 packages from the original TypeWeaver dataset, 469 bundled successfully.
Of those packages, only 192 (40.9%) type check. Out of the 177 packages after filtering,
only 39 (22.0%) type check. Within the 50-package sample, only 7 (14%) type check.
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Table 5.2: Summary of StenoType evaluation datasets.

(a) Number of packages, files, lines of code (LOC), tokens, and size.

Dataset Packages Files LOC Tokens Size

TS-Sourced 50 50 6,339 65.9K 225 KB

JS-Sourced 50 91 7,645 82.0K 287 KB

(b) Number of functions, annotation sites, and type definitions.

Dataset Functions
Annotation

sites
Type

definitions

TS-Sourced 455 1,823 190

JS-Sourced 723 2,874 4

I do not apply a training cutoff, since StenoType was fine-tuned only on
TypeScript code, which should not overlap with the JS-Sourced dataset.
Even if StarCoderBase was trained on this dataset, it was not trained on
the specific format that I use for inference.

Table 5.2 shows a summary of the TS-Sourced and JS-Sourced evalua-
tion datasets. JS-Sourced contains a non-zero number of type definitions
because modern JavaScript supports class definitions.

5.3.2 Inference

I evaluated single-step migration with StarCoderBase-7B, and multi-step
migration with both StarCoderBase-7B and StenoType. I call these con-
figurations StarCoder-7B Single, StarCoder-7B Multi, and StenoType-7B
Multi. These configurations were evaluated on both the TS-Sourced

and JS-Sourced evaluation datasets, resulting in a total of six evaluation
configurations.

For all configurations, I use a context window size of 8,192 tokens
and the parameters temperature = 0.2 and top_p = 0.95, following the
convention used by Chen et al. [2021]. For the multi-step migration, I
configure the model to generate up to five type definitions, to avoid
timeouts or infinite loops, and I generate 20 samples for each problem. I
ran inference on an NVIDIA H100 GPU, using the vLLM library [Kwon
et al., 2023]. Inference took between 40–154 minutes, with the multi-step
migrations taking more time. The inference times for each configuration
are shown in Table 5.3.
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Table 5.3: Inference time for each evaluation configuration, in minutes.
(1) = TS-Sourced; (2) = JS-Sourced

Dataset Configuration
Inference time

(minutes)

(1)
StarCoder-7B Single 40

StarCoder-7B Multi 131

StenoType-7B Multi 154

(2)
StarCoder-7B Single 77

StarCoder-7B Multi 59

StenoType-7B Multi 72

5.3.3 Results

5.3.3.1 Does Migrated Code Parse?

In the migration approaches I use, StarCoderBase and StenoType may gen-
erate syntactically invalid code. This is different from the type prediction
models I evaluated, which generate syntactically valid type annotations.
Thus, in this first experiment, I determine how many packages and files
parse after migration. Table 5.4 and Figure 5.4 show the number and
percentage of packages and files that parse as valid TypeScript. For the
TS-Sourced dataset, every package consists of a single file, so the num-
bers are the same for packages and files. From this experiment, both the
multi-step approach and fine-tuning help the model generate syntactically
valid code.

Interestingly, when evaluated on JS-Sourced, StarCoder-7B Multi al-
most always produces code that parses, while StenoType always produces
code that parses. This is because the models make very few changes to
JavaScript input: usually the models do not generate any code and simply
return the same code as the input, or they only add or delete single, small
functions.

5.3.3.2 How Many Packages and Files Type Check?

Table 5.5 and Figure 5.5 show the number and percentage of packages and
files that type check. Each package was migrated 20 times, so there are
1,000 packages in total, and each TS-Sourced package contains only one
file, so the file-level results for TS-Sourced are identical to the package-
level results. For this evaluation, a package type checks if the TypeScript
compiler returns without errors. However, requiring an entire package
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Table 5.4: Number and percentage of packages and files that parse. Each of the
50 packages was migrated 20 times, resulting in 1,000 packages total.
Each TS-Sourced package consists of a single file, so its results are not
repeated in the table.
✓ = number of packages or files that parse
# = total number of packages or files
% = percentage of packages or files that parse
(1) = TS-Sourced; (2) = JS-Sourced

Packages Files

Dataset Configuration ✓ # % ✓ # %

(1)
StarCoder-7B Single 938 1,000 93.8

StarCoder-7B Multi 940 1,000 94.0

StenoType-7B Multi 960 1,000 96.0

(2)
StarCoder-7B Single 890 1,000 89.0 2,401 2,511 95.6

StarCoder-7B Multi 992 1,000 99.2 2,582 2,590 99.7

StenoType-7B Multi 1,000 1,000 100.0 2,760 2,760 100.0
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Figure 5.4: Percentage of packages and files that parse.
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Table 5.5: Number and percentage of packages and files that type check. Each
of the 50 packages was migrated 20 times, resulting in 1,000 packages
total. Each TS-Sourced package consists of a single file, so its results
are not repeated in the table.
✓ = number of packages or files that type check
# = total number of packages or files
% = percentage of packages or files that type check
(1) = TS-Sourced; (2) = JS-Sourced

Packages Files

Dataset Configuration ✓ # % ✓ # %

(1)
StarCoder-7B Single 254 1,000 25.4

StarCoder-7B Multi 351 1,000 35.1

StenoType-7B Multi 472 1,000 47.2

(2)
StarCoder-7B Single 113 1,000 11.3 1,404 2,511 55.9

StarCoder-7B Multi 128 1,000 12.8 1,520 2,590 58.7

StenoType-7B Multi 140 1,000 14.0 1,720 2,760 62.3
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Figure 5.5: Percentage of packages and files that type check.
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to type check means every file within that package must type check.
Therefore, the table also shows the number of files that type check, i. e.,
there are no compiler errors attributed to that file. This is the same metric
I used in Section 3.3.3.2.

The results show that both the multi-step approach and fine-tuning im-
prove the number of packages and files that type check. With TS-Sourced,
StenoType has a 22% absolute improvement over the baseline, StarCoder-
7B Single. StenoType also shows an improvement on JS-Sourced; how-
ever, the 14% of packages that type check is the same set of packages that
type checked before migration.

This is actually an example of a trivial migration: StenoType simply
returned the input without changing it. Other kinds of trivial migrations
are possible; for example, the model could generate trivial type annotations
and not require any new type definitions, or the model could delete code
from the input.

5.3.3.3 What Percentage of Type Annotations Are Trivial?

The total number of trivial type annotations, in files with no errors, is
shown in Table 5.6 and Figure 5.6. For TS-Sourced, the multi-step ap-
proach generates fewer type annotations and significantly more trivial type
annotations. With StenoType, the number of annotations increases, but the
percentage of trivial type annotations decreases. On average, each file has
9–13 type annotations, of which 1–2 are trivial. This shows that, for files
with no errors, StenoType produces mostly non-trivial type annotations.
The table also shows the number of trivial type annotations in the original
source files, i. e., before the types were removed for evaluation. For Star-
Coder-7B Single and StarCoder-7B Multi, there were more trivial type
annotations in the original source files than were added by the migration.

For JS-Sourced, the multi-step approach generates only four type anno-
tations (none of which is trivial), while StenoType generates mostly trivial
type annotations. The original source files do not contain any handwritten
type annotations, so they contain no trivial type annotations.

5.3.3.4 Errors

Table 5.7 shows the total number of errors, as well as the average number
of errors per package and per file. Each TS-Sourced package contains only
one file, so its per-file results are identical to the per-package results. For
TS-Sourced, StarCoder-7B Multi produces more errors than StarCoder-
7B Single, but StenoType produces the fewest. On the other hand, the
number of errors for JS-Sourced is more consistent.
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Table 5.6: Number and percentage of type annotations that are any, any[], or
Function, in files with no errors. The number of files with no errors is
also shown.
Original = number of trivial type annotations in original source files
✓ = number of trivial type annotations
# = total number of type annotations
% = percentage of trivial type annotations
(1) = TS-Sourced; (2) = JS-Sourced

Trivial annotations

Dataset Configuration Files Original ✓ # %

(1)
StarCoder-7B Single 254 1,288 276 3,370 8.2

StarCoder-7B Multi 351 1,010 848 3,291 25.8

StenoType-7B Multi 472 812 1,179 5,870 20.1

(2)
StarCoder-7B Single 1,404 89 902 9.9

StarCoder-7B Multi 1,520 0 4 0.0

StenoType-7B Multi 1,720 150 217 69.1
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Figure 5.6: Percentage of type annotations that are any, any[], or Function, in
files with no errors.
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Table 5.7: Average number of errors per file and per package. Each TS-Sourced

package consists of a single file, so its results are not repeated in the
table. The total number of errors is also shown.
(1) = TS-Sourced; (2) = JS-Sourced

Errors

Dataset Configuration Total Per package Per file

(1)
StarCoder-7B Single 3,105 3.1

StarCoder-7B Multi 4,135 4.1

StenoType-7B Multi 2,498 2.5

(2)
StarCoder-7B Single 9,249 9.2 3.7

StarCoder-7B Multi 9,733 9.7 3.8

StenoType-7B Multi 9,730 9.7 3.5

5.3.3.5 What Percentage of Annotation Sites Were Filled?

Table 5.8 and Figure 5.7 show the number and percentage of type annota-
tion sites that have been filled with a type annotation. For TS-Sourced,
about 33–46% of type annotation sites are filled by type migration. The
numbers are different for each configuration, because adding type defini-
tions can add more type annotation sites. For JS-Sourced, there are many
more type annotation sites, but significantly fewer sites are filled by the
model.

Not every type annotation site in a program needs to be filled. For
example, the statement const f = function() { return 1; } has an an-
notation site for f and another for the anonymous function, but filling
both sites would be verbose and redundant.

5.3.3.6 How Many Type Definitions Were Added and Used?

Table 5.9 and Figure 5.8 show the number of type definitions that were
added, as a percentage of the total number of type definitions, within files
that parse. Table 5.10 and Figure 5.9 are similar, but shows the number of
type definitions that were used. Recall from Section 5.3.1 that I remove types
to create the TS-Sourced dataset, but I do not remove class definitions
because they contain fields and methods.

For TS-Sourced, StenoType generates fewer type definitions; however
a much higher percentage of those type definitions are actually used, i. e.,
they are referenced by type annotations. This is unsurprising, as the multi-
step migration explicitly instructs StenoType to generate definitions for
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Table 5.8: Number and percentage of type annotation sites that were filled with
a type annotation, in files that parse. The number of files that parse is
also shown.
✓ = number of type annotation sites that were filled
# = total number of type annotation sites
% = percentage of type annotation sites that were filled
(1) = TS-Sourced; (2) = JS-Sourced

Annotation sites

Dataset Configuration Files ✓ # %

(1)
StarCoder-7B Single 938 14,669 36,123 40.6

StarCoder-7B Multi 940 11,711 35,242 33.2

StenoType-7B Multi 960 16,203 35,364 45.8

(2)
StarCoder-7B Single 2,401 4,464 54,720 8.2

StarCoder-7B Multi 2,582 275 55,236 0.5

StenoType-7B Multi 2,760 1,662 57,483 2.9
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Figure 5.7: Percentage of type annotation sites that were filled with a type anno-
tation, in files that parse.
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Table 5.9: Number and percentage of type definitions that were added, out of the
total number of type definitions present, since the input may contain
class definitions. These results are only for files that parse. The number
of files that parse is also shown.
+ = number of type definitions that were added
# = total number of type definitions
% = percentage of type definitions that were added
(1) = TS-Sourced; (2) = JS-Sourced

Type definitions

Dataset Configuration Files + # %

(1)
StarCoder-7B Single 938 1,226 2,259 54.3

StarCoder-7B Multi 940 1,218 2,087 58.4

StenoType-7B Multi 960 802 1,447 55.4

(2)
StarCoder-7B Single 2,401 406 529 76.7

StarCoder-7B Multi 2,582 23 103 22.3

StenoType-7B Multi 2,760 3 83 3.6
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Figure 5.8: Percentage of type definitions that were added, out of the total number
of type definitions present.
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Table 5.10: Number and percentage of type definitions that were used, out of the
total number of type definitions present, within the files that parse.
The number of files that parse is also shown.
✓ = number of type definitions that were used
# = total number of type definitions
% = percentage of type definitions that were used
(1) = TS-Sourced; (2) = JS-Sourced

Type definitions

Dataset Configuration Files ✓ # %

(1)
StarCoder-7B Single 938 776 2,259 34.3

StarCoder-7B Multi 940 908 2,087 43.5

StenoType-7B Multi 960 844 1,447 58.3

(2)
StarCoder-7B Single 2,401 277 529 52.4

StarCoder-7B Multi 2,582 13 103 12.6

StenoType-7B Multi 2,760 12 83 14.5
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Figure 5.9: Percentage of type definitions that were used, out of the total number
of type definitions present.
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Table 5.11: Similarity between the (untyped) input code and the untyped output
code, i. e., with type annotations and definitions removed.
(1) = TS-Sourced; (2) = JS-Sourced

Dataset Configuration Similarity

(1)
StarCoder-7B Single 0.926

StarCoder-7B Multi 0.957

StenoType-7B Multi 0.982

(2)
StarCoder-7B Single 0.886

StarCoder-7B Multi 0.963

StenoType-7B Multi 0.9998

types that are actually used. On the other hand, for JS-Sourced, StenoType

generates almost no type definitions.

5.3.3.7 Does the Code Change, Beyond Adding Types?

Ideally, when the model generates type annotations and type definitions, it
does not change the existing code. Otherwise, automated migration could
insert or delete code and affect program functionality. To measure this, I
compute the normalized similarity between the original code (which is
untyped) and the generated code with type annotations and type defini-
tions removed. This is calculated as 1− distance

len1+len2 , where distance is the
Levenshtein distance and len1 and len2 are the number of characters of
the input and output code (with types removed). In other words, if the
model only adds annotations and definitions, then the similarity should be
1.0, since the two strings are identical after removing types.

Table 5.11 shows these results. Both multi-step migration and fine-tuning
lead to better results, with the model being less likely to add or delete
non-type code. StenoType performs best on the JS-Sourced dataset, but in
the previous results, StenoType was also unlikely to add type annotations
or definitions to JS-Sourced. This suggests that when given JavaScript,
StenoType does not change the input very much, and just returns the code
as-is.

5.3.3.8 Does the Model Leave the Code Unchanged?

To determine whether the model makes any changes to the program
during migration, I compare the input and output programs, requiring an
exact match, and count the number of packages and files that are identical.
The results are shown in Table 5.12 and Figure 5.10. For TS-Sourced,
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Table 5.12: Number and percentage of files and packages that were unchanged
after migration. Each TS-Sourced package consists of a single file, so
its results are not repeated in the table.
✓ = number of packages or files that were unchanged
# = total number of packages or files
% = percentage of packages or files that were unchanged
(1) = TS-Sourced; (2) = JS-Sourced

Packages Files

Dataset Configuration ✓ # % ✓ # %

(1)
StarCoder-7B Single 23 1,000 2.3

StarCoder-7B Multi 45 1,000 4.5

StenoType-7B Multi 0 1,000 0.0

(2)
StarCoder-7B Single 369 1,000 36.9 1,739 2,511 69.3

StarCoder-7B Multi 639 1,000 63.9 2,204 2,590 85.1

StenoType-7B Multi 852 1,000 85.2 2,583 2,760 93.6
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Figure 5.10: Percentage of files and packages that were unchanged after migra-
tion.
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each package consists of a single file, so the results are not repeated. The
results show that the model makes changes to almost every package, and
with StenoType, every package has some change. However, the opposite
situation occurs with JS-Sourced: most code is unchanged by the model,
especially when moving to multi-step migration and StenoType.

5.3.3.9 What is the Success Rate of Migration, in the Pessimistic Case?

Finally, I consider a pessimistic view of migration: a file successfully
migrates if:

1. there are no compiler errors, i. e. the file type checks;

2. the input exactly matches the output with all types removed, i. e.
the model did not add or delete code beyond type annotations and
definitions; and

3. at least one type annotation or type definition was added, i. e. the
model did not simply return the input.

These criteria are strict; however, they exclude several undesirable cases,
such as migrations with incorrect types, migrations that modified the
original code beyond adding types, and migrations that did nothing. The
results are shown in Table 5.13 and Figure 5.11. The success rate for TS-
Sourced improves significantly when using multi-step migration, and
fine-tuning StenoType also helps. However, none of the models was able
to correctly migrate a single file from the JS-Sourced dataset.

5.3.4 Case Studies

5.3.4.1 Generating Interfaces

Figure 5.12 shows an example of the output produced by StenoType. The
original file defines a Tokenizer class as well as several interfaces, and has
been simplified for exposition. Before providing the file to StenoType, all
type annotations and interfaces are removed, but the class definition is
kept, otherwise the entire file would be blank.

StenoType adds the type annotation IToken on line 631, as well as the
interface definitions IToken (lines 601–607) and ITokenizer (lines 608–614),
and the result type checks. The definition for IToken is type correct and
consistent with the call on line 623 and the definition on line 631. However,
compared to original definition shown in Figure 5.12b, value (line 603)
should have type any (line 636), and all the properties of IToken should be
read only. On the other hand, the definition for ITokenizer matches the
original definition, except that the original definition contains comments.
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Table 5.13: Number and percentage of files that were correctly migrated, in the
pessimistic case.
✓ = number of files that migrated correctly
# = total number of files
% = percentage of files that migrated correctly
(1) = TS-Sourced; (2) = JS-Sourced

Correct

Dataset Configuration ✓ # %

(1)
StarCoder-7B Single 48 1,000 4.8

StarCoder-7B Multi 210 1,000 21.0

StenoType-7B Multi 257 1,000 25.7

(2)
StarCoder-7B Single 0 2,511 0.0

StarCoder-7B Multi 0 2,590 0.0

StenoType-7B Multi 0 2,760 0.0
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Figure 5.11: Percentage of files that were correct migrated, in the pessimistic case.
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601 export interface IToken {

602 type: TokenType;

603 value?: number | string;

604 line: number;

605 column: number;

606 string: string;

607 }

608 export interface ITokenizer {

609 readNext(): void;

610 getCurrent(): IToken | undefined;

611 isAtEnd(): boolean;

612 getLine(): number;

613 getColumn(): number;

614 }

615

616 export class Tokenizer implements ITokenizer {

617 // many fields and methods omitted

618 private readNumber() {

619 while (this.isDigit(this.peek())) {

620 this.advance()

621 }

622 const stringValue = ... // omitted

623 this.setCurrent({

624 type: TokenType.NUMBER,

625 value: parseFloat(stringValue),

626 line: this.curTokenLine!,

627 column: this.curTokenColumn!,

628 string: stringValue,

629 });

630 }

631 private setCurrent(token: IToken ) {

632 this.curToken = token;

633 }

(a) The highlighted type definitions and type annotation were added by StenoType.

634 export interface IToken {

635 readonly type: TokenType;

636 readonly value?: any;

637 readonly line: number;

638 readonly column: number;

639 readonly string: string;

640 }

(b) The original definition for IToken.

Figure 5.12: A (simplified) tokenizer class from a compiler.
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Interestingly, the StarCoder-7B Multi configuration is also able to gen-
erate type definitions and type annotations; however, it also deletes some
code, which makes the output incorrect.

5.3.4.2 Generating Nonsense

In some cases, the model can go completely off track and generate non-
sense. Figure 5.13 shows an example. The input (Figure 5.13a) is a class
with several methods, which are omitted in this example. In the first step
(Figure 5.13b), the model is instructed to add type annotations, and it does
so on lines 651–653. However, it also tries to add definitions for those types,
but instead of adding definitions, it adds imports from made-up modules
on lines 645–647. Then, in the second step (Figure 5.13c), the model is
prompted to add a type definition for UnleashConfig, but it generates
meaningless code and continues doing so until it reaches the maximum
number of tokens for its context window.

5.4 discussion

prompts . My approach for the type definition generation problem is
to use the Git commit prompt format, which provides code and an edit
instruction to the model. In these experiments, as well as my preliminary
experiments, I found that a simpler prompt, instructing the model to
make smaller changes, was more effective than a complicated prompt that
instructed the model to make significant changes to the code. Additionally,
I found that it was more effective to instruct the model to make specific
changes, i. e., adding a specific type definition. Intuitively, a simpler and
more specific instruction makes the problem easier for the model, as fewer
changes are required. This suggests further refinements to the prompt,
for example, instructing the model to add a type definition with specific
properties. However, one downside is that simpler prompts usually require
more steps, which increases inference time.

js-sourced dataset. The JS-Sourced dataset is more challenging
than TS-Sourced for three reasons. First, JS-Sourced is constructed from
JavaScript projects, rather than TypeScript files. Second, JS-Sourced con-
sists of multi-file projects, rather than single-file examples. Third, the
multiple files in a project were bundled together for JS-Sourced, but the
bundling process introduces compilation artifacts that do not appear in
handwritten code. Therefore, the JS-Sourced consists of code and patterns
that the model never observed during training. This explains the results
I observed: most packages do not type check after migration, few anno-
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tations and type definitions are added, and most of the time the model
makes no changes to the code at all.

While I believe it is important to evaluate type migration systems on
multi-file JavaScript projects, to better represent how type migration would
occur in practice, I also believe the model needs to be trained on JavaScript
as well as TypeScript. I leave this to future work.
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641 export class UnleashFlags {

642 private constructor (features, config, context) {}

643 // omitted

644 }

(a) The original input is a class, UnleashFlags, which is mostly omitted in this example.

645 import { UnleashConfig } from ’./unleash-config’

646 import { UnleashContext } from ’./unleash-context’

647 import { UnleashFeature } from ’./unleash-feature’

648

649 export class UnleashFlags {

650 private constructor (

651 features: UnleashFeature[],

652 config: UnleashConfig,

653 context: UnleashContext

654 ) {}

655 }

(b) In the first step, StarCoder-7B Multi adds type annotations, but also adds meaningless
imports.

656 import { UnleashConfig } from ’./unleash-config’

657 import { UnleashContext } from ’./unleash-context’

658 import { UnleashFeature } from ’./unleash-feature’

659

660 export interface UnleashConfig {

661 unleashAPI: string

662 unleashAPIPath: string

663 unleashAPIVersion: string

664 unleashAPIMetricsPath: string

665 unleashAPIMetricsVersion: string

666 unleashAPIMetricsInterval: number

667 unleashAPIMetricsIntervalTime: number

668 unleashAPIMetricsResetInterval: number

669 unleashAPIMetricsResetIntervalTime: number

670 // over 900 lines

671 }

(c) In the second step, StarCoder-7B Multi rewrites the class and generates nonsense.

Figure 5.13: StarCoder-7B Multi generates nonsense for this example.
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D I S C U S S I O N

6.1 performance bottleneck

There are several ways to improve the performance of these models,
including better search, more training, and better datasets. I believe the
performance bottleneck lies in better search, followed by better datasets.
The search approaches I have been using are initial steps, and I believe
there is much work that can be done here. Programs contain significant
amounts of information that is not visible at the token level, such as type
constraints and hierarchies, syntax, program structure, resolved names
and identifiers, static call graphs, and so on. Exposing this information to
a model and requiring the output to satisfy program constraints should
yield better performance.

As a second step, I believe improving the quality of training data should
also help. The training data I used is from The Stack, and there are no
guarantees on code quality or complexity: most code appears to be small
programs or examples, rather than large-scale applications. Training on
higher quality code or synthetic data should improve performance.

I do not believe additional training, without improving the training
dataset, will help. In fact, additional training is likely to lead to overfitting,
as the model simply reproduces its training data as output.

6.2 refactoring

The type migration problem is ultimately a refactoring problem, as type
migration involves more than simply adding type annotations to code.
Programmers writing in an untyped language will use idioms and patterns
that are different and not compatible with a typed version of that language.
As Chung [2023, p. 75] writes, "in practice few untyped programs are ac-
tually typable without modification . . . [f]ew programmers write perfectly
typable untyped code without the aid of a type checker."

Object Prototypes and Classes

Prior to the introduction of classes in ECMAScript 6, JavaScript objects
used prototypes. For example, here is how a Circle class and area method
could be defined in JavaScript:

101
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672 function Circle(x, y, r) {

673 this.x = x;

674 this.y = y;

675 this.r = r;

676 }

677

678 Circle.prototype.area = function() {

679 return Math.PI * this.r * this.r;

680 }

With strict mode disabled, this program type checks with the TypeScript
compiler. However, strict mode is often encouraged, as it allows more bugs
to be detected. In this case, strict mode issues errors for line 672 because
the parameters implicitly have the any type, and lines 673–675 because
this implicitly has the any type.

These issues could be resolved by adding type annotations, but the more
idiomatic TypeScript code is to declare a class with properties x, y, and r,
and a constructor with type-annotated arguments:

681 class Circle {

682 x: number;

683 y: number;

684 r: number;

685

686 constructor(x: number, y: number, r: number) {

687 this.x = x;

688 this.y = y;

689 this.r = r;

690 }

691

692 area() {

693 return Math.PI * this.r * this.r;

694 }

695 }

Variable Used as Two Different Types

In Section 3.3.6.4, I discussed an example where a variable i is used as a
number in one part of the program, but then the same i is used as a string.
A simplified version of that program is shown below:

696 let i;

697

698 for (i = 0; i < 5; i += 1) {
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699 console.log(i)

700 }

701

702 const o = {a: 1, b: 2, c: 3};

703 for (i in o) {

704 console.log(i);

705 }

Neither number nor string type annotations work for i on line 696, as
this is code that relies on the dynamic type of variables. Although the
TypeScript type system can accommodate this with the union type number

| string or the trivial type any, a better solution would be to refactor the
code to use two different variables.

Eval

eval is problematic because it allows arbitrary code to be evaluated, so
it may not be possible to statically assign types. For example, in the code
below, the getProp function on line 707 returns either the string "foo" or
"bar", which is then used on line 708 to access a property of obj:

706 const obj = {foo: 1, bar: "2"};

707 const prop = getProp(); // returns "foo" or "bar"

708 const v = eval("obj." + prop);

The only valid annotations for v are any or the union type number |

string, but in general, it may not be possible to determine the type of the
value returned by eval. In this case, a better approach would be to refactor
the code to avoid eval, so that at least number | string could be used.

Sequentially Added Properties

In Section 2.1, I discussed the example of dynamically adding properties
to an empty object:

709 let point = {}

710 point.x = 42;

711 point.y = 54;

This was a common JavaScript idiom before the introduction of classes.
There are several verbose type annotations that could be used for point,
a new type could be defined, or the code could be refactored to define
a class and use a constructor. Yet another approach is to initialize the
properties from within the object:

712 let point = {
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713 x: 42,

714 y: 54,

715 }

Incorrect Number of Function Arguments

JavaScript allows functions to be called with any number of arguments.
Typically, this can be used with the special arguments object to implement
variadic functions. For example, the following function adds its arguments
and returns the sum:

716 function sum() {

717 let result = 0;

718 for (let i of arguments) {

719 result += i;

720 }

721 return result;

722 }

723 sum(1, 2, 3);

However, the call on line 723 causes an error in TypeScript, because the
type checker requires the number of arguments to match with the function
definition, in this case, zero arguments. To make this valid TypeScript, the
function must be refactored to take rest parameters, e. g. ...nums:

724 function sum(...nums: number[]): number {

725 let result = 0;

726 for (let i of arguments) {

727 result += i;

728 }

729 return result;

730 }

731 sum(1, 2, 3);

dynamic evaluation

All of the evaluation methods discussed in this dissertation are static: only
the output code is examined, and the dynamic behaviour of the program
is not considered. However, as type migration is a refactoring problem,
these static metrics (such as accuracy, type checking, and counting trivial
type annotations) may not be enough, and it may be useful to consider
a dynamic evaluation, to ensure that the program behaviour does not
change after migration.
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One approach for a dynamic evaluation is to consider JavaScript pro-
grams with test suites. After migrating the program to TypeScript, we
could compile back to JavaScript and then run the test suite. If the test suite
passes both before and after migration, then we have some confidence that
the program behaviour has not changed. However, this approach requires
high quality test suites, so a tool like npm-filter [Arteca and Turcotte, 2022]
could be used to automate the process of downloading, building, and
testing JavaScript packages.

6.3 limitations

Some limitations of my work are that I do not consider recursive types or
generic types. In Chapter 3, I evaluate DeepTyper and LambdaNet, which
do not support generic types at all.

I also evaluate two models that support FIM, InCoder and StarCoder, and
in Chapter 4 I present OpenTau, which supports FIT. These models may be
able to predict type annotations that involve generics, e. g., Array<string>,
if generics are present in the training data. However, these models cannot
migrate an untyped function to a typed generic function:

732 // Untyped

733 function identity(x) { return x; }

734

735 // Generic function

736 function identity<T>(x: T): T { return x; }

Similarly, in Chapter 5, StenoType may be able to generate recursive
types and generic types if they were present in the training data. An
analysis of the training data (which contains roughly 9.7 million Type-
Script files) shows that there are roughly 410,000 occurrences of generic
functions and generic classes, and roughly 217,000 files (2.25% of the
dataset) contain at least one generic.

Finally, as TypeScript evolves, new language features are being intro-
duced, but these models are trained on programs from older versions of
TypeScript. Therefore, a model may not be able to migrate code written in
a newer version of TypeScript than the model was trained on.
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7.1 gradual typing for javascript

Although my dissertation focuses on type migration for TypeScript, there
are several other gradual type systems for JavaScript and TypeScript.
Thiemann [2005] and Anderson et al. [2005] present the earliest type
systems for JavaScript, and later works present type systems and type
checkers for JavaScript [Guha et al., 2011; Chugh et al., 2012; Lerner et al.,
2013; Vekris et al., 2015; Chaudhuri et al., 2017], as well as sound, gradual
type systems for TypeScript [Rastogi, Swamy, et al., 2015; Richards et al.,
2015]. However, none of these systems support type inference, nor do
they provide tools for type migration. Instead, like Typed Racket [Tobin-
Hochstadt and Felleisen, 2008], they require programmers to manually
migrate their code to add types.

7.2 constraint-based type inference

There are many constraint-based approaches to type migration for the
gradually typed lambda calculus and some modest extensions. The earliest
approach was a variation of unification-based type inference [Siek and
Vachharajani, 2008], and more recent work uses a wide range of tech-
niques [Campora et al., 2018; Castagna et al., 2019; Garcia and Cimini,
2015; Migeed and Palsberg, 2020; Miyazaki et al., 2019; Phipps-Costin et al.,
2021; Campora et al., 2022; Mahmoud, 2023]. Since these approaches are
based on programming language semantics, they produce sound results,
which is their key advantage over learning-based approaches. However,
these would require significant work to scale to complex programming
languages such as JavaScript.

There are also several constraint-based approaches to type inference for
larger languages. Anderson et al. [2005] present the first type inference
algorithm for a fragment of JavaScript, but it does not support gradual
typing. Furr, An, Foster, and Hicks [2009] infer types for Ruby and treat
type annotations in a novel way: inference assumes that annotations are
correct, and defers checking them to run time. Rastogi, Chaudhuri, et al.
[2012] infer gradual types for ActionScript to improve performance, and
Chandra et al. [2016] infer types for JavaScript programs with the goal
of compiling them to run efficiently on resource-constrained devices, but
their approach is not gradual and deliberately rejects certain programs.
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Hassan et al. [2018] uses an SMT solver to infer types for Python programs,
but their approach is also not gradual.

An alternative to purely static constraint-based approaches is to use dy-
namic approaches, or a combination of both static and dynamic techniques.
For example, Furr, An, and Foster [2009] and An et al. [2011] use dynamic
profiles to infer types for Ruby, while Saftoiu [2010] and Naus [2015] use
a similar technique for JavaScript, and Hackett and S.-y. Guo [2012] and
Kedlaya et al. [2013] use hybrid analyses to infer types to optimize code.

Even when constraint-based type inference succeeds in a gradually
typed language, it can fail to produce the kinds of types that programmers
write, e. g., named types, instead of the most general structural type for
every annotation. Soft Scheme [Cartwright and Fagan, 1991] infers types
for Scheme programs, but Flanagan [1997, p. 41] reports that it produces
unintuitive types. For Ruby, Kazerounian, Ren, et al. [2020] use hand-coded
heuristics to infer more natural types, and Kazerounian, Foster, et al. [2021]
use machine learning to predict equalities between structural types and
more natural types. Similarly, Pandi et al. [2021] infers more natural types
for TypeScript, by combining logical constraints from the type system
and natural constraints from a deep learning model that learns naming
conventions from code examples.

A related problem to type inference is inferring the structure of ad hoc
data, e. g. log files, based on observing example data. Fisher et al. [2008]
propose an inference algorithm that discovers the structure of provided
data and outputs a format specification that can then be used to generate
further tools for data analysis. The algorithm considers base types and
complex types built from base types, and tries to improve and simplify
specifications by searching the description space for types that minimize
an information-theoretic score, i. e., the search prefers descriptions that are
compact and precise. This is particularly relevant to type prediction, which
I discuss below (Section 7.3), where it is useful to search the space of type
predictions for type correct and precise type annotations.

7.2.1 Inferring TypeScript Type Declarations

As an alternative to fully migrating a JavaScript project to TypeScript, Type-
Script type declaration (.d.ts) files can be used. These files provide type
annotations for functions and constants exported by JavaScript modules,
so that type information is available when those modules are imported
into TypeScript projects. I use type declaration files when I evaluate Type-
Weaver and StenoType on JavaScript packages with dependencies.

Although many type declaration files are available in the community-
maintained DefinitelyTyped repository, there has been research in auto-
matically generating these declarations with dynamic analysis [Kristensen
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and Møller, 2017a; Kahlert, 2018; Cristiani and Thiemann, 2021]. Addi-
tionally, there is evidence that some of the DefinitelyTyped annotations
are incorrect, and there are a variety of techniques to identify these bugs.
For example, Feldthaus and Møller [2014] and Kristensen and Møller
[2019] use static analysis, Williams et al. [2017] develop a tool based on
the polymorphic blame calculus, and Kristensen and Møller [2017b] use
feedback-directed random testing. More recently, Hoeflich et al. [2022]
identifies mismatches between JavaScript code and their type declarations
in DefinitelyTyped, by converting types into contracts and then checking
them.

7.3 deep type prediction

7.3.1 JavaScript and TypeScript

One of the first works to study probabilistic type inference for JavaScript
was JSNice [Raychev et al., 2015], which predicts program properties,
including types, but it only supports a limited set of type names. Deep-
Typer [Hellendoorn et al., 2018] and LambdaNet [Wei et al., 2020b] are two
different approaches for predicting types for TypeScript and JavaScript
programs, which I discuss at length in Sections 3.1.1 and 3.1.2. DeepTyper
was the first deep neural network for TypeScript type prediction, and uses a
bidirectional recurrent neural network architecture, while LambdaNet uses
a graph neural network architecture, which allows it to better represent
relationships between type variables. Unlike DeepTyper, LambdaNet can
predict types that were not observed during training, and ensures that
multiple uses of the same variable have a consistent type.

NL2Type [Malik et al., 2019] is another system for predicting JavaScript
types that improves on DeepTyper by considering comments as well as the
names of identifiers. Khaled Saifullah et al. [2020] propose a technique that
captures locally specific context and achieves similar accuracy as Deep-
Typer and NL2Type, but with significantly fewer resources. Like Lambda-
Net, Ye, Zhao, and Sarkar [2021] also use graph neural networks for type
prediction, and their best model achieves higher accuracy than Deep-
Typer and LambdaNet. Stallenberg et al. [2022] apply an unsupervised
probabilistic type inference approach to improve unit test generation for
JavaScript.

OptTyper [Pandi et al., 2021] takes a different approach to the type
inference problem: it extracts the logical constraints of a type system and
the natural constraints learnt from a code base, combining both kinds of
constraints into a single, continuous optimization problem. This allows
OptTyper to predict types that respect (local) type constraints; however,
this does not guarantee that the entire program type checks. OptTyper
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achieves higher accuracy than DeepTyper and LambdaNet, but is limited
to a vocabulary of 100 library types, and does not predict user-defined
types at all.

TypeBert [Jesse, Devanbu, and Ahmed, 2021] predicts built-in types for
TypeScript, and was followed up by DiverseTyper [Jesse, Devanbu, and
Sawant, 2022], which can also predict user-defined types and achieves
state-of-the-art accuracy on type prediction. Both models are BERT-style
pre-trained models, which are closely related to transformer-based models
like InCoder [Fried et al., 2023], i. e., they work by being trained on large
amounts of data rather than using custom model architectures and training
data. CodeTIDAL5 [Seidel et al., 2024] is another transformer model, based
on T5, and is able to predict user-defined types. Unlike other works, Seidel
et al. include a small evaluation on JavaScript, which is manually reviewed,
but they do not use a type checker.

Other than TypeWeaver, there are few end-to-end deep type prediction
tools for TypeScript. A recent one is FlexType [Voruganti et al., 2023], an
editor plug-in that can take a type prediction model and automatically
or interactively add type annotations to a JavaScript file. Additionally,
FlexType uses smaller models that can run without a GPU.

7.3.2 Python

There are also several type prediction systems for Python. A distinction
between Python type systems and TypeScript type systems is that Python
code is predominantly nominally typed: the type of a variable is either a
built-in type or a class, whereas TypeScript uses structural types.

The earliest type prediction system for Python is by Z. Xu et al. [2016],
which collects type hints (e. g., from data flow, attribute accesses, vari-
able names, and explicit type checks) and uses probabilistic inference.
DLTPy [Boone et al., 2019] uses a recurrent neural network to make pre-
dictions based on comments and the names of identifiers.

Typilus [Allamanis et al., 2020] uses a graph neural network, can predict
rare and user-defined types, and uses a type checker to filter out obviously
incorrect type predictions. Typilus also includes an evaluation with a type
checker, which tests each type prediction one at a time: the predicted type
is inserted into a ground truth, annotated program, possibly replacing an
existing annotation, and then type checked.

TypeWriter [Pradel et al., 2020] combines learning-based probabilistic
type prediction with search-based type validation. First, a model predicts
a ranked list of type annotations for each function argument and result
type, using context from comments and identifier names. Then, TypeWriter
searches the space of type assignments, using a type checker to validate
type annotations and guarantee that no type assignment introduces a type
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error. However, TypeWriter is limited to a fixed vocabulary of types, and
cannot predict rare or user-defined types.

PYInfer [Cui et al., 2021] uses static analysis to generate a labeled
dataset on which the model is trained, and can predict user-defined
types. Type4Py [Mir, Latoškinas, Proksch, et al., 2022] is trained on a
type-checked dataset, and also provides an editor plug-in for interactive
use. HiTyper [Peng, Gao, et al., 2022] uses a combination of both static
type inference and type prediction: when a type cannot be statically
inferred, a deep learning model predicts a type that is validated by a type
checker. Thus, HiTyper guarantees type correctness; however, it does not
output type-annotated Python code, so additional work is required to
use HiTyper as a type migration tool. TypeGen [Peng, Wang, et al., 2023]
predicts types by generating chain-of-thought prompts that capture some of
the type constraints in natural language prose. DLInfer [Y. Yan et al., 2023]
uses static slicing to isolate variable usages before training a deep neural
network. Ye, Zhao, Shirako, et al. [2023] use a combination of machine
learning and SMT constraint solving to infer types, but their end goal is
code optimization, not type migration.

7.3.3 Evaluation Datasets

Several of the previously mentioned works for type prediction also provide
evaluation datasets [Hellendoorn et al., 2018; Jesse, Devanbu, and Ahmed,
2021; Allamanis et al., 2020; Pradel et al., 2020; Mir, Latoškinas, Proksch,
et al., 2022; Y. Yan et al., 2023]. In addition, there are standalone datasets
such as ManyTypes4Py [Mir, Latoškinas, and Gousios, 2021] and Many-
Types4TypeScript [Jesse and Devanbu, 2022], and Abdelaziz et al. [2022]
present techniques for generating high quality type data for Python. How-
ever, many of these datasets are incomplete (e. g., they only contain URLs
to repositories and not source code), or they contain only preprocessed
data and not the original source files. Furthermore, their metrics are based
on the accuracy of individual type annotations. TypeEvalPy [Venkatesh
et al., 2024] is notable for presenting a handwritten micro-benchmark of
Python programs and extensive evaluation scripts for type prediction, but
their metrics are also based on accuracy and they do not do type migration
or type checking.

7.4 code generation

Recently, decoder-only transformer neural networks have been widely
used for general code generation, which in extension are capable of type
prediction. Notable among these works are Codex [Chen et al., 2021],
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InCoder [Fried et al., 2023], SantaCoder [Ben Allal et al., 2023], and Star-
Coder [Li et al., 2023a]. For code generation tasks that require edit-style
generation, fill-in-the-middle training and inference strategies have been
proposed [Ben Allal et al., 2023; Fried et al., 2023; Bavarian et al., 2022].

Code LLMs are typically evaluated on benchmarks such as Human-
Eval [Chen et al., 2021], which evaluate the functional correctness of
small functions; however, there is interest in constructing benchmarks
that evaluate a code LLM’s ability on a larger variety and higher difficulty
of tasks, such as generating classes and translating code. These include
CrossCodeBench [Niu et al., 2023], ClassEval [Du et al., 2023], and Code-
Scope [W. Yan et al., 2024]. The type definition generation task is an
example of a more challenging task that has not been studied or evalu-
ated extensively. However, the more general problem of type migration
can be considered an instance of code translation, i. e., a translation from
JavaScript to TypeScript. Both CrossCodeBench and CodeScope include
code translation tasks in their benchmarks.
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dataset quality. There is always room to improve dataset quality,
both for training and evaluation datasets. For training, my datasets have
been constructed from The Stack, a collection of permissively licensed
source code. However, there are no guarantees on code quality: the code
may not type check or even parse, may be throwaway code, and may
not even have any useful type annotations or type definitions to train on.
Finding or manually constructing a source of high quality code should
help with training.

There are similar issues with evaluation datasets, as well as additional
challenges. First, when using publicly available code for evaluation, there
is always the potential for the evaluation code to leak into the training
dataset. Second, most dataset infrastructure and models expect a single
file as output, but a more realistic evaluation should use multi-file projects.
Although there are tools that can bundle multi-file projects into a single file,
they can introduce compilation artifacts that confuse the model. Therefore,
a different approach for multi-file projects should be explored.

evaluation criteria . I believe that type checking the output of
type prediction models is an important first step. However, there are
other evaluation criteria that could be explored, such as the precision of a
type annotation, partial typedness (e. g., inheritance), permitting “slightly
wrong” type annotations, and even examining the run-time behaviour of
migrated programs.

type prediction, revisited. Currently, TypeWeaver invokes a type
prediction model and chooses the top, most likely prediction. On the other
hand, OpenTau incorporates search, and tries to find type predictions
with more type information. There is potential to explore different search
strategies, such as type checking predictions. However, this is not straight-
forward: type checking an expression may depend on the type of another
(unannotated) expression, and sometimes the TypeScript compiler infers a
type that is too precise and fails to type check. Therefore, the type checking
procedure would need to be relaxed.

Another avenue to explore in OpenTau is to incorporate additional
context in the prompt. Currently, OpenTau inserts usage comments, which
show examples of a function being invoked. However, there may be other
useful context that could be included.
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Finally, similar to StenoType, type prediction could take place over
several steps. For example, once the initial type predictions are assigned, a
type checker could be invoked. Then, if there are any type errors, a single
type error could be extracted and used to construct a new prompt for the
model to revise its type predictions.

generating type definitions , revisited. While StenoType is
successful in generating type definitions for TypeScript code, the results are
mixed for JavaScript. One potential reason is that StenoType was trained
on TypeScript code and not JavaScript. Therefore, an alternate approach is
to train a model on JavaScript, specifically examples of JavaScript being
migrated to TypeScript. One way is to manually construct these training
examples, or compile a TypeScript program to JavaScript, and then train
the model to essentially decompile JavaScript back to TypeScript. However,
one potential challenge is that the compilation process introduces artifacts
that do not commonly occur in handwritten JavaScript.

An alternative approach is to generate type definitions first, which
reflects how a programmer writes in a statically typed programming lan-
guage: defining types before use. The idea is to use constraint-based type
inference (potentially using an unsound analysis, to avoid the challenges of
a sound analysis) to generate a possibly verbose structural type definition,
and then use machine learning to generate a name for that type. However,
the challenge then would be to evaluate the quality of a type name.

Finally, there is an approach that does not require machine learning.
The idea is to process the training dataset and create a database of type
definitions. Thus, if a type-annotated program refers to an undefined type
T, the database is queried for T’s definition, which is then inserted into
the program. However, the challenge here is that there may be multiple
definitions for T, so the right one must be selected.

fully automated type migration. My dissertation focuses on
partial type migration, as a full migration may involve refactoring code.
I intentionally leave this as future work, as the scope of the problem is
too large for a single dissertation. Current LLMs may not be able to fully
migrate code perfectly, but the hope is that they can still reduce the overall
burden on programmers.

end-to-end tooling . Currently, there are few end-to-end migration
tools, or even end-to-end type prediction tools. While research prototypes
are important, the desired outcome is to have end-to-end tools that pro-
grammers can use. I believe that it is important to build these tools, not
only so they can be used, but also because the process of building them
will uncover new problems to study.
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In this dissertation, I set out to show that machine learning can be used to
partially migrate JavaScript programs to TypeScript, by predicting type
annotations and generating type definitions.

First, in Chapter 3, I show that we should evaluate type prediction
systems by type checking the generated types, instead of using accuracy. As
part of this work, I built TypeWeaver, an end-to-end system for evaluating
type prediction systems, and presented a dataset of 506 widely used Java-
Script packages that are suitable for type migration. I show that StarCoder-
Base can migrate 68.8% of files in the dataset, and observe that certain
patterns in JavaScript do not make sense in TypeScript, so a migration
may require manual refactoring of the code.

Next, in Chapter 4, I present OpenTau, a search-based approach for type
prediction that uses LLMs and a new training technique called fill in the
type (FIT). I show that OpenTau outperforms simpler approaches for type
prediction that do not exploit program decomposition, and that the typedness
metric allows OpenTau to search for more precise types.

Finally, in Chapter 5, I present StenoType, an LLM fine-tuned to generate
TypeScript type definitions. I describe the training format for StenoType,
which involves multiple steps of prompting with specific instructions, and
show that StenoType is effective at generating TypeScript type definitions.
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