
Predicting TypeScript Type
Annotations and Definitions

with Machine Learning

Ming-Ho Yee

Northeastern University

March 29, 2024

Ph.D. Dissertation Defense

- Hello everyone, and thanks for coming to my thesis defense.

- Today, I’ll be talking about how we can use machine learning to predict TypeScript type

annotations and definitions.

1

Type migrationType migrationType migrationType migration: JavaScript to TypeScript

• Incremental migration

• Static type checking

• Better documentation

• Editor integration

2

0:10 to here (0:50 for this slide)

- To motivate the problem, let’s say we have a JavaScript program, and we want to migrate it to

TypeScript.

- We can do this by incrementally adding type annotations to our code.

- As the program becomes more typed, we benefit from static type checking, better

documentation, and editor integration.

- For example, on the left is a small code fragment.

- The code is untyped, so the text editor can’t provide any useful information.

- On the other hand, in the typed version of the code, s is a string.

- As a result, the text editor can show the methods that are available on s.

- So, there are clear benefits for using TypeScript, and a migration path to get from JavaScript to

TypeScript.

- Unfortunately, manual type migration is a laborious process

2

Machine learning for type prediction

Predict the most likely type annotation for the given code fragment

3

Classification

function f(x) {
return x + 1;

}

ProbabilityType of x

0.4221number

0.2611any

0.2558string

other

Large language models for code

function f(x: _hole_) {
return x + 1;

}

function f(x: number) {
return x + 1;

}

1:00 to here (1:30 for this slide)

- To automate type migration, there has been research in using machine learning approaches.

- The idea is to frame type migration as type prediction: “Predict the most likely type

annotation for the given code fragment.”

- For this talk, I’ll group these approaches into two categories.

- First are classification approaches.

- These are older approaches where models are trained specifically for type

prediction.

- Given a code fragment, for each identifier, they produce a list of the most likely

type annotations and their probabilities.

- You can think of the output as a table of predictions, one for each identifier.

- In the example, we can see a list of type predictions for x, which is the only

identifier that can be annotated.

- The other approach is to use large language models for code.

- These models are trained for general-purpose code generation, but have become

very popular for coding tasks in general.

- Given a code fragment, they predict what code comes next.

- Some models support fill-in-the-middle, which allows code generation to occur at

arbitrary locations rather than at the very end.

- For example, I’ve inserted a hole where the type annotation for x should be, and

the model uses the surrounding context to predict number.

3

Large language models (LLMs)

4

The quick brownThe ␣quick ␣br own

␣fox

␣dog

␣car

␣jumped

␣chased

0.7

0.2

0.1

0.9

0.1

SantaCoder-1B StarCoder-15B

StarCoder-1B

StarCoder-3B

StarCoder-7B

2:30 to here (2:00 for this slide)

- Let’s talk about large language models, or LLMs.

- As an example, consider this fragment of English text.

- We’ll use this as input, also called a prompt, and the model will predict what words

follow.

- Technically, models operates on tokens, not words.

- Let’s tokenize this input, and I’ll point out that a token may be smaller than a

word.

- Now, given these four tokens, the model returns a probability distribution over tokens.

- “fox” is the most likely, followed by “dog”, then “car.

- We can select “fox” and append it to the prompt to create a new prompt, and get another

probability distribution for the next token.

- In this example, I just selected the most likely token at each step, but there are many

different strategies.

- In practice some kind of sampling is done, so the results will be nondeterministic.

- For my research, I have used open code LLMs, such as SantaCoder and its successor StarCoder,

where the parameters and training data are openly available.

- More parameters means the model is more powerful, but it also requires significantly

more resources

- However, StarCoder has 15 billion parameters, so just downloading it requires about 60

GB of disk space, and then you need a datacentre GPU to run it.

- Fortunately, there are smaller versions of StarCoder, with 1, 3, and 7 billion parameters.

4

Fill in the middle (FIM)

Training Inference

5

function fact(n) {
if (n == 0) return 1;
return n * fact(n-1);

}

function fact(n) {
if (n == 0) return 1;
return n * fact(n-1);

}

<fim_prefix>function fact(n) {
<fim_middle>if (n == 0) return 1;
<fim_suffix>return n * fact(n-1);
}

<fim_prefix>function fact(n) {
<fim_suffix>return n * fact(n-1);
}<fim_middle>if (n == 0) return 1;

function f(x: _hole_) {
return x + 1;

}

<fim_prefix>function f(x: <fim_suffix>) {
return x + 1;

}<fim_middle>

<fim_prefix>function f(x: <fim_suffix>) {
return x + 1;

}<fim_middle>number

function f(x: number) {
return x + 1;

}

4:30 to here (1:30 for this slide)

- So far, we discussed left-to-right generation, where text is generated at the end of the prompt.

- Let’s now look at fill-in-the-middle.

- Training is done with a special format.

- Let’s say we have this factorial example, and we want to train the model to generate the

second line, conditioned on the surrounding lines.

- We insert some special tokens that mark the prefix, middle, and suffix.

- Then we move the middle to the very end, which has transformed the prefix and suffix

into just a single prefix.

- In other words, turned fill-in-the-middle into a left-to-right generation problem.

- For inference, when we use the model to generate text, we use the same format.

- Let’s say we want to type annotate the parameter x.

- We insert the special tokens, marking the prefix, suffix, and middle, and rearrange.

- The model predicts that number should come after the special middle token.

- So we extract that and reverse the transformation to get our result.

5

Limitations of existing approaches

6

Fill in the Middle

function f(x: _hole_) {
return x + 1;

}

Type Definitions

interface Point {
x: number,
y: number

}

Evaluation

function f(x: string) {
return x * 1;

}

Do Machine Learning Models

Produce TypeScript Types

That Type Check? [ECOOP 2023]

Yee and Guha

Type Prediction With

Program Decomposition and

Fill-in-the-Type Training
[submitted to COLM 2024]

Cassano, Yee, Shinn, Guha, and Holtzen

Generating TypeScript Type

Definitions with Machine

Learning

6:00 to here (1:30 for this slide)

- Now that I’ve covered some background material, let’s return to the original problem of type

prediction.

- I have identified limitations of existing approaches, and my thesis addresses them.

- First, there is the question of how to actually evaluate these systems.

- The typical practice is to compute accuracy, but in my ECOOP paper, I argue that we

should type check the type annotations.

- Second, there are challenges when using large language models with fill-in-the-middle out of the

box.

- My colleagues and I submitted a paper to the Conference on Language Modeling where

we address these challenges.

- Finally, I address a problem that, to my knowledge, has not been worked on

- This is the problem of generating type definitions.

- Once you have predicted types, sometimes there are references to undefined types.

- So I want to use machine learning to generate them.

6

Thesis

7

Do Machine Learning Models

Produce TypeScript Types

That Type Check? [ECOOP 2023]

Yee and Guha

Type Prediction With

Program Decomposition and

Fill-in-the-Type Training
[submitted to COLM 2024]

Cassano, Yee, Shinn, Guha, and Holtzen

Generating TypeScript Type

Definitions with Machine

Learning

Machine learning can be used to partially migrate JavaScript programs to

TypeScript, by predicting type annotations and generating type definitions.

Machine learning can be used to partially migrate JavaScript programs to

TypeScript, by predicting type annotations and generating type definitions.

Machine learning can be used to partially migrate JavaScript programs to

TypeScript, by predicting type annotations and generating type definitions.

Machine learning can be used to partially migrate JavaScript programs to

TypeScript, by predicting type annotations and generating type definitions.

Machine learning can be used to partially migrate JavaScript programs to

TypeScript, by predicting type annotations and generating type definitions.

7:30 to here (1:30 for this slide)

- This now brings me to my thesis:

- Machine learning can be used to partially migrate JavaScript programs to TypeScript, by

predicting type annotations and generating type definitions.

- I want to go through each part of this thesis statement:

- My research uses open-source code LLMs, specifically SantaCoder and StarCoder.

- I’m focusing on a partial migration that predicts type annotations and generates type

definitions.

- I believe a full migration will involve other tasks like refactoring, and is beyond the

scope of a single PhD.

- Finally, I restrict my research to JavaScript and TypeScript, two of the most popular

languages on GitHub and StackOverflow.

- To support my thesis, I make three contributions:

- These address the limitations I discussed on the previous slide.

- The rest of this talk will cover these three topics, and I’ll start with the ECOOP paper.

7

TypeWeaverTypeWeaverTypeWeaverTypeWeaver: type check the type annotations

8

Prior work:

TypeScript

dataset

Type

annotations AccuracyCompare
Remove type

annotations

Type prediction

model

TypeWeaver:

JavaScript

dataset
Type prediction

model

Type

annotations Result
TypeScript

compiler

Type

weaving
TypeScript

Do Machine Learning Models Produce TypeScript Types That Type Check? [ECOOP 2023]

Accuracy =
correct predictions

total predictions

9:00 to here (1:30 for this slide)

- As the first contribution to my thesis, I propose type checking the type annotations, and built

TypeWeaver to do this.

- Let’s first walk through the existing evaluation workflow:

- We start with a TypeScript dataset.

- The type annotations are removed, and the untyped code is given to a type prediction

model, which produces type annotations.

- The predicted type annotations are then compared to the original type annotations, and

accuracy is computed.

- Accuracy is the number of correct predictions divided by the total number of

predictions.

- Correct means an exact textual match, and requires a ground truth of existing,

handwritten type annotations.

- TypeWeaver takes a different approach:

- I start with a JavaScript dataset, because I want the evaluation to reflect how these

systems are used in practice, where you migrate from JavaScript to TypeScript.

- Next, the dataset is given to a type prediction model.

- Then, there’s a step called type weaving, which combines the type annotations with the

original JavaScript code to produce TypeScript.

- This allows running the type checker on the code to get a result.

- I’ll be covering pieces of this pipeline for this section of the talk.

8

Constructing the JavaScript dataset

1. Top 1,000 most
downloaded
packages

2. Download source
code

3. Filter and clean

4. Check dependencies

9

Dependencies?

No

Are they typed?

Yes

No Yes

Result: 506 packages

Do Machine Learning Models Produce TypeScript Types That Type Check? [ECOOP 2023]

10:30 to here (1:30 for this slide)

- To construct the evaluation dataset, I started with the top 1,000 most downloaded packages

from the npm Registry.

- Next, I downloaded the package source code from GitHub.

- This is to make sure I get the original code that developers work on.

- I don’t want compiled or minified code.

- Then I apply several filtering and cleaning steps.

- For example, some packages do not contain any code, or were implemented in some

other language, so I filter those out.

- Finally, I check the package dependencies.

- This is important, because when type checking a package, I need to handle its

dependencies.

- If there are no dependencies, then I can use the package as-is.

- If the package has dependencies, I check if those dependencies are typed.

- By typed, I mean that someone has written type declarations and uploaded them

to DefinitelyTyped.

- DefinitelyTyped is a community-maintained repository of type declarations, so

that JavaScript packages can be used in TypeScript projects.

- If there are no type declarations for a dependency, then I discard the package.

- In other words, I ensure that if a package has dependencies, then all those dependencies

are typed.

- This results in a final dataset of 506 packages.

9

Type weaving: JS + type annotations = TS

10

Do Machine Learning Models Produce TypeScript Types That Type Check? [ECOOP 2023]

function f(x, y) {
return x + y;

}

ProbabilityTypeToken

function

0.6381stringf

(

0.4543stringx

,

0.4706numbery

)

{

return

0.3861numberx

+

0.5039numbery

;

}

FunctionDeclaration
Identifier
Parameter
Identifier

Parameter
Identifier

Block
ReturnStatement
…

function f(x, y) {
return x + y;

}

FunctionDeclaration
Identifier
Parameter
Identifier

Parameter
Identifier

Block
ReturnStatement
…

ProbabilityTypeToken

function

0.6381stringf

(

0.4543stringx

,

0.4706numbery

)

{

return

0.3861numberx

+

0.5039numbery

;

}

function f(x, y): string {
return x + y;

}

function f(x, y): string {
return x + y;

}

FunctionDeclaration
Identifier
Parameter
Identifier

Parameter
Identifier

Block
ReturnStatement
…

ProbabilityTypeToken

function

0.6381stringf

(

0.4543stringx

,

0.4706numbery

)

{

return

0.3861numberx

+

0.5039numbery

;

}

function f(x: string, y): string {
return x + y;

}

function f(x: string, y): string {
return x + y;

}

FunctionDeclaration
Identifier
Parameter
Identifier

Parameter
Identifier

Block
ReturnStatement
…

ProbabilityTypeToken

function

0.6381stringf

(

0.4543stringx

,

0.4706numbery

)

{

return

0.3861numberx

+

0.5039numbery

;

}

function f(x: string, y: number): string {
return x + y;

}

function f(x: string, y: number): string {
return x + y;

}

FunctionDeclaration
Identifier
Parameter
Identifier

Parameter
Identifier

Block
ReturnStatement
…

ProbabilityTypeToken

function

0.6381stringf

(

0.4543stringx

,

0.4706numbery

)

{

return

0.3861numberx

+

0.5039numbery

;

}

function f(x: string, y: number): string {
return x + y;

}

FunctionDeclaration
Identifier
Parameter
Identifier

Parameter
Identifier

Block
ReturnStatement
…

12:00 to here (2:00 for this slide)

- Now I want to talk about type weaving, the step where we combine predicted type annotations

with JavaScript to produce TypeScript.

- This is needed for the classification approaches that generate type annotations.

- As an example, let’s say we have this JavaScript function as input, and the table of type

predictions.

- For this example, I’m only showing the top, most likely type annotation for each identifier,

and I’ve cleaned up the table.

- In general, you can assume more columns for additional, less likely type annotations.

- The problem we have is that we can’t directly type check these results. We need type weaving.

- First, we use the TypeScript compiler to parse the JavaScript to get an abstract syntax

tree.

- Now we traverse the syntax tree, and every time we encounter a declaration node, we

look up the type prediction from the table, and update the program.

- In this example, we find the function f has return type string, x is string, and y is

number.

- There are other types in this table, assigned to other identifiers, but we ignore

them for simplicity.

- The result is an annotated TypeScript file, which can be type checked.

- By the way, this program actually type checks, even though it was not intended.

- The number is coerced to a string and + is string concatenation, so the function returns a

string.

10

Type prediction front end

11

Do Machine Learning Models Produce TypeScript Types That Type Check? [ECOOP 2023]

function sum_list(l) {
let sum = 0;
for (let i = 0; i < l.length; i++) {

sum += l[i];
}
return sum;

}

function sum_list(l: _hole_) {
let sum = 0;
for (let i = 0; i < l.length; i++) {

sum += l[i];
}
return sum;

}

<fim_prefix>function sum_list(l:
<fim_suffix>) {

let sum = 0;
for (let i = 0; i < l.length; i++) {

sum += l[i];
}
return sum;

}<fim_middle>

<fim_prefix>function sum_list(l:
<fim_suffix>) {

let sum = 0;
for (let i = 0; i < l.length; i++) {

sum += l[i];
}
return sum;

}<fim_middle>any[]): number {
 if (l.length === 0) {
 throw 'Empty list!';
 }
 if (l.length === 1) {
 return l[0];
 }
 return sum

<fim_prefix>function sum_list(l:
<fim_suffix>) {

let sum = 0;
for (let i = 0; i < l.length; i++) {

sum += l[i];
}
return sum;

}<fim_middle>any[]): number {
 if (l.length === 0) {
 throw 'Empty list!';
 }
 if (l.length === 1) {
 return l[0];
 }
 return sum

function sum_list(l: any[]) {
let sum = 0;
for (let i = 0; i < l.length; i++) {

sum += l[i];
}
return sum;

}

Original codeInsert holeReformat inputFill in the middleExtract typeResult

14:00 to here (1:30 for this slide)

- That was type weaving, which is for models that generate tables of type predictions.

- Now I want to talk about the type prediction front end, which is required when we use large

language models for type prediction

- The front end takes a JavaScript program as input.

- Next, it inserts a holes at the type annotation locations, one location at a time.

- Then the program is transformed into the appropriate format for fill-in-the-middle.

- The model returns a completion.

- In this case, the model has generated a lot of code, more than just a type annotation.

- So we’ll use a parser to extract the first type annotation, and then insert it into the

original program.

- In fact, this problem of generating extra code happens a lot, and I’ll come back to this when

discussing the next paper.

11

Percentage of packages that type checkPercentage of packages/files that type check

12

Do Machine Learning Models Produce TypeScript Types That Type Check? [ECOOP 2023]

0%

20%

40%

60%

80%

100%

DeepTyper LambdaNet InCoder StarCoder

Packages

23.7%

10.4%

21.7%

30.8%

0%

20%

40%

60%

80%

100%

DeepTyper LambdaNet InCoder StarCoder

Packages

23.7%

10.4%

21.7%

30.8%

40.3%

21.7%

62.9%
68.8%

0%

20%

40%

60%

80%

100%

DeepTyper LambdaNet InCoder StarCoder

Packages Files

15:30 to here (1:30 for this slide)

- Now we can type check packages and look at results.

- For the paper, I evaluated three type prediction systems.

- The first two are DeepTyper and LambdaNet.

- These are “classification” approaches and require type weaving.

- DeepTyper, an early system from 2018, uses a bidirectional recurrent neural

network architecture.

- LambdaNet, from 2020, uses a graph neural network.

- The third system was InCoder from 2023, which is a code LLM that supports fill-in-the-

middle.

- Since then, I evaluated a more recent code LLMs that support fill-in-the-middle: StarCoder.

- Now we can ask the question: what percent of our dataset type checks with these systems?

- It’s promising that the newer models are showing improvement.

- But overall, I would say this result is disappointing, but not surprising.

- Requiring an entire package to type check is a very high standard to meet, and even a

single incorrect type annotation will cause the entire package to fail.

- So let’s ask a more fine-grained question, and look at whether files type check.

- And now the results are more encouraging.

12

Percentage of trivial annotations
(in files that type check)

13

Do Machine Learning Models Produce TypeScript Types That Type Check? [ECOOP 2023]

63.2%

28.0%

44.8%
48.2%

0%

20%

40%

60%

80%

100%

DeepTyper LambdaNet InCoder StarCoder

17:00 to here (1:00 for this slide)

- But one question we should ask: what happens if a system type annotated everything with

“any”?

- This would type check, but the type annotations aren’t very helpful.

- We prefer type annotations that are precise, and contain useful information to the

programmer.

- So going back to the results for the files that type check, let’s see what percentage of type

annotations are trivial.

- By trivial, I mean “any,” array of any, or the generic Function type.

- The results are okay.

- It looks like the systems generally predict non-trivial types.

- But there is room for improvement.

13

Thesis

14

Machine learning can be used to partially migrate JavaScript programs to

TypeScript, by predicting type annotations and generating type definitions.

Do Machine Learning Models

Produce TypeScript Types

That Type Check? [ECOOP 2023]

Yee and Guha

Type Prediction With

Program Decomposition and

Fill-in-the-Type Training
[submitted to COLM 2024]

Cassano, Yee, Shinn, Guha, and Holtzen

Generating TypeScript Type

Definitions with Machine

Learning

18:00 to here (0:30 for this slide)

- That was the first part of my talk on the ECOOP paper for evaluating type prediction systems.

- Now I’m moving on to the second part of the talk.

- I’ll be discussing how we can predict type annotations.

- This is the paper my colleagues and I submitted to the Conference on Language Modeling

14

Improving type prediction

15

Type Prediction With Program Decomposition and Fill-in-the-Type Training [submitted to COLM 2024]

TypeScript

dataset

function f(x: _hole_) {
return x + 1;

}

function f(x: any) {
return x + 1;

}

Dataset

quality

Program

decomposition

Fill-in-the-type

training

Program

typedness

18:30 to here (1:00 for this slide)

- The work in this paper builds on lessons I learned from TypeWeaver, with the goal of improving

type prediction.

- There are four parts to this work.

- First, I revisit the dataset, with an emphasis on better dataset quality.

- This time we use a TypeScript dataset, and this is a trade-off that I’ll discuss on the next

slide.

- Second, instead of trying to type annotate an entire program at a time, I decompose the program

into smaller subprograms.

- We can represent this as a tree, and we type annotate each subprogram at a time.

- Third, I use fill-in-the-type for type prediction.

- This is a variant of fill-in-the-middle that I designed.

- Fourth, to avoid the problem of a system predicting “any” for all type annotations, I introduce a

metric to measure the amount of type information in a prediction.

- I’ll cover these four improvements in this section of the talk.

15

Dataset quality

16

function f(x) {
return x + 1;

export default {
group: "typography",
currentPage: 2

}

export const TabIcons = [
'tab', 'code-braces', 'tags', 'target'

]
export function getTabIcon(tabType: number) {

return TabIcons[tabType];
}

13M files

Filter 21K files

Quality score

Cutoff

17K files

744 files

Type Prediction With Program Decomposition and Fill-in-the-Type Training [submitted to COLM 2024]

19:30 to here (2:00 for this slide)

- First, let’s start with the dataset

- As I said before, I want a TypeScript dataset because some JavaScript files cannot be

typed without refactoring.

- I want to avoid this refactoring problem.

- Let me show some more examples of programs that I’d like to exclude from a dataset.

- First, we have a function that has a syntax error, so it will always fail to type check.

- Second, we have a file that exports a dictionary. There is nothing to type annotate, so it

will always type check.

- Third, we have a very short file that isn’t trivial, but it’s still not very interesting.

- To construct the dataset, I started with The Stack, a dataset of 6TB of permissively licensed code,

in 30 programming languages.

- TypeScript is one of those languages, and The Stack contains 13 million TypeScript files.

- Next, I do some filtering and then compute a quality score.

- These steps remove programs like the ones on the left, which are not appropriate for

evaluation.

- Finally, I apply a time-based cutoff (Dec 31 2021).

- Files before this cutoff are potentially used for training, and files after are used for

evaluation.

- This results in a final dataset of 744 files.

16

Program decomposition

17

let greeting = "Hello";
let suffix = "!";

// Produces a greeting for the given name
const hello = (name) => {

return greeting + " " + name;
};

function helloGen(name) {
const helloHelper = () => {

return hello(name) + suffix;
};
return helloHelper;

}

root

varNode1 hello helloGen

helloHelper

let greeting = "Hello";
let suffix = "!";

// Produces a greeting for the given name
const hello = (name) => {

return greeting + " " + name;
};

function helloGen(name) {
const helloHelper = () => {

return hello(name) + suffix;
};
return helloHelper;

}

let greeting = "Hello";
let suffix = "!";

// Produces a greeting for the given name
const hello = (name) => {
 return greeting + " " + name;
};

function helloGen(name) {
const helloHelper = () => {

return hello(name) + suffix;
};
return helloHelper;

}

let greeting = "Hello";
let suffix = "!";

// Produces a greeting for the given name
const hello = (name) => {

return greeting + " " + name;
};

function helloGen(name) {
 const helloHelper = () => {
 return hello(name) + suffix;
 };
 return helloHelper;
}

let greeting = "Hello";
let suffix = "!";

// Produces a greeting for the given name
const hello = (name) => {

return greeting + " " + name;
};

function helloGen(name) {
 const helloHelper = () => {
 return hello(name) + suffix;
 };

return helloHelper;
}

let greeting = "Hello";
let suffix = "!";

// Produces a greeting for the given name
const hello = (name) => {

return greeting + " " + name;
};

function helloGen(name) {
const helloHelper = () => {

return hello(name) + suffix;
};
return helloHelper;

}

let greeting = "Hello";
let suffix = "!";

// Produces a greeting for the given name
const hello = (name) => {

return greeting + " " + name;
};

function helloGen(name) {
const helloHelper = (): string => {

return hello(name) + suffix;
};
return helloHelper;

}

helloHelper

let greeting = "Hello";
let suffix = "!";

// Produces a greeting for the given name
const hello = (name) => {

return greeting + " " + name;
};

function helloGen(name): () => string {
const helloHelper = (): string => {

return hello(name) + suffix;
};
return helloHelper;

}

helloHelper

helloGen

Type Prediction With Program Decomposition and Fill-in-the-Type Training [submitted to COLM 2024]

21:30 to here (2:00 for this slide)

- Now that we have our dataset, let’s take a file from that dataset and try to migrate it.

- First we need to decompose it into smaller subprograms.

- If you recall from the introduction, a program like the one here is given to a language model and

then tokenized.

- But a problem is that language models can only accept a limited number of tokens as

input.

- To support these limits, we would like to split a program into smaller subprograms.

- My approach is to follow the declaration hierarchy in a program.

- Going by the example, we start with a root node that represents the top-level of the program.

- Next, we have a special varNode for the top-level variable declarations.

- Then we have the hello function as a new node.

- The comment is included in the node, because it provides additional context.

- Next, we have helloGen.

- Finally, helloHelper is a child node of helloGen, because it is an inner definition of

helloGen.

- Now we’ve decomposed the program into a tree, and this induces a bottom-up traversal order.

- We want to predict types for helloHelper before helloGen.

- Then, when the model predicts types for helloGen, the context already contains the types

for helloHelper.

17

Fill-in-the-type training

18

function sum_list(l: _hole_) {
let sum = 0;
for (let i = 0; i < l.length; i++) {

sum += l[i];
}
return sum;

}

function sum_list(l: any[]): number {
 if (l.length === 0) {
 throw 'Empty list!';
 }
 if (l.length === 1) {
 return l[0];
 }
 return sum) {

let sum = 0;
for (let i = 0; i < l.length; i++) {

sum += l[i];
}
return sum;

}

Fill in the middle

function sumThree(a: number, b: number, c: number): number {
return a + b + c;

}

function sumThree(a: number, b: number, c: number): number {
 return a + b + c;
}

<fim_prefix>function sumThree(a: number, b:
<fim_suffix>}
<fim_middle>number, c: number): number {
 return a + b + c;

Fill in the type

function sumThree(a: number, b: number, c: number): number {
return a + b + c;

}

function sumThree(a: number, b: number, c: number): number {
return a + b + c;

}

function sumThree(a: number, b: number, c) {
return a + b + c;

}

<fim_prefix>function sumThree(a: number, b:
<fim_suffix>, c) {

return a + b + c;
}<fim_middle>number

Type Prediction With Program Decomposition and Fill-in-the-Type Training [submitted to COLM 2024]

23:30 to here (2:00 for this slide)

- Now that we’ve decomposed our program, we want to run type prediction for each subprogram.

- The problem is that we can’t use fill-in-the-middle out of the box.

- Recall this example from earlier.

- We would like to fill in the type annotation for “l.”

- But when we use fill-in-the-middle, the large language model generates more code than

needed.

- It generates an entire function implementation, not just the type annotation.

- We have a front end that extracts the type annotation, but we really would like the model

to generate just a single type.

- The reason for this is because of the way fill-in-the-middle was trained.

- Let’s look at a simpler example as a reminder.

- We start with a type annotated function.

- Next, we randomly select a middle span.

- We transform it to the fill-in-the-middle format.

- Now we train the model on this entire sequence.

- We want to tweak this process slightly, and we call it “fill-in-the-type” because it is trained

specifically for type prediction and not arbitrary code generation.

- The main difference is that instead of selecting an arbitrary span, we select just a type

annotation.

- Next, we remove type annotations from the suffix.

- This is so we get an input that reflects the input during inference, where the prefix

18

is type annotated but the suffix is not.

- This example shows the case where “a” is already annotated, “b” is what we’re training

the model to annotate, and “c” hasn’t been annotated yet.

- Now we can insert the special tokens and rearrange, and this is the format we give to the

model for training.

- The hope is that the model is trained to produce only a single type annotation

when it sees this input.

18

Program typedness

19

function f(x: number) {
return x + 1;

}

function f(x: any) {
return x + 1;

}

ScoreType annotation

1.0unknown

0.5any

0.5Function

0.2undefined

0.2nullScore: 500 Score: 0

Both programs type check

We also use this metric during type prediction

Type Prediction With Program Decomposition and Fill-in-the-Type Training [submitted to COLM 2024]

25:30 to here (2:00 for this slide)

- So we’ve taken a file from our dataset, decomposed it, and predicted types for it using fill-in-the-

type.

- Recall from TypeWeaver that we had a concern: what if a type prediction system

generated “any” for all types?

- I introduce a metric called program typedness to account for this.

- For example, consider the two functions on the slide.

- Other than the type annotation for x, they are both the same.

- If the evaluation metric is whether the program type checks, then both functions are

considered equally good.

- However, we prefer the function on the right, as “number” has more information than

“any.”

- Our approach is to count the number of undesirable type annotations, and use them to compute

a score.

- The table on the right has annotations we consider to be undesirable, and a score for how

“bad” they are.

- “unknown” is the worst because it causes type errors: an unknown value can only be

assigned to the any type.

- “any” and “Function” are the next worst.

- “any” will always type check, and “Function” will type check as long as its value is

used as a function.

- “undefined” and “null” are undesirable but do carry some information; they suggest that

19

a value is uninitialized or missing.

- All other types have a score of 0.

- So to compute the typedness score for a program, we iterate over the type annotations in a

program, assign scores, and then sum.

- Finally, we normalize to a number between 0 and 1000, where 0 is the best, and 1000 means

every type annotation is “unknown,” the worst type.

- In this example, the function on the left has a typedness score of 500.

- The typedness score actually serves two purposes.

- We use it to evaluate how typed a program is.

- But we also use it during inference, as a search metric.

19

Percentage of files that type check

20

32.9%
39.9%

0%

20%

40%

60%

80%

100%

FIM FIT

Type Prediction With Program Decomposition and Fill-in-the-Type Training [submitted to COLM 2024]

32.9%
39.9%

47.4%

0%

20%

40%

60%

80%

100%

FIM FIT FIT + program decomposition

27:30 to here (1:00 for this slide)

- Now we can talk about experiments and results.

- Our first experiment is to compare fill-in-the-middle with fill-in-the-type.

- For this experiment, I fine-tuned SantaCoder on TypeScript to get the first result, and then

I further fine-tuned it for fill-in-the-type to get the second result.

- In this experiment, fill-in-the-type is significantly better than fill-in-the-middle.

- Finally, we run program decomposition with fill-in-the-middle.

- This experiment performs better than fill-in-the-type without program decomposition.

20

Typedness scores

21

200.7 200.9

154.6

0

50

100

150

200

250

FIM FIT FIT + program decomposition

Type Prediction With Program Decomposition and Fill-in-the-Type Training [submitted to COLM 2024]

28:30 to here (0:30 for this slide)

- Next, let’s look at the typedness scores.

- Again, fill-in-the-middle and fill-in-the-type do not do program decomposition.

- They both have similar typedness scores.

- Program decomposition also uses the typedness score to search for better predictions.

- So it achieves a much better typedness score.

21

Thesis

22

Machine learning can be used to partially migrate JavaScript programs to

TypeScript, by predicting type annotations and generating type definitions.

Do Machine Learning Models

Produce TypeScript Types

That Type Check? [ECOOP 2023]

Yee and Guha

Type Prediction With

Program Decomposition and

Fill-in-the-Type Training
[submitted to COLM 2024]

Cassano, Yee, Shinn, Guha, and Holtzen

Generating TypeScript Type

Definitions with Machine

Learning

29:00 to here (0:30 for this slide)

- That was the second paper.

- Now we have reached the last part of the talk.

- The last part of my thesis is about using machine learning to generate type definitions.

22

Problem definition

23

function dist(p1, p2) {
const dx = p2.x - p1.x;
const dy = p2.y - p1.y;
return Math.sqrt(dx*dx + dy*dy);

}

function dist(p1: Point, p2: Point) {
const dx = p2.x - p1.x;
const dy = p2.y - p1.y;
return Math.sqrt(dx*dx + dy*dy);

}

interface Point {
 x: number,
 y: number
}

29:30 to here (1:00 for this slide)

- To illustrate the problem, let’s look at an example.

- Here is a function “dist” that computes the distance between two points.

- With the work I have already done, I can use a machine learning model to predict type

annotations for p1 and p2.

- However, this example will not type check, because Point is not defined.

- I want to use machine learning to generate this Point definition.

- The intuition is that a large language model has been trained on a lot of code, so that it

associates the type annotation “Point” with this function definition.

- During training, the model must have encountered the Point type and its definition.

23

Approach: single-step migration

24

<commit_before>...
<commit_msg>...
<commit_after>...

<commit_before>...
<commit_msg>...
<commit_after>interface Point {
 x: number,
 y: number
}

function dist(p1: Point, p2: Point) {
 const dx = p2.x - p1.x;
 const dy = p2.y - p1.y;
 return Math.sqrt(dx*dx + dy*dy);
}

<commit_before>function dist(p1, p2) {
 const dx = p2.x - p1.x;
 const dy = p2.y - p1.y;
 return Math.sqrt(dx*dx + dy*dy);
}
<commit_msg>...
<commit_after>interface Point {
 x: number,
 y: number
}

function dist(p1: Point, p2: Point) {
 const dx = p2.x - p1.x;
 const dy = p2.y - p1.y;
 return Math.sqrt(dx*dx + dy*dy);
}

<commit_before>function dist(p1, p2) {
 const dx = p2.x - p1.x;
 const dy = p2.y - p1.y;
 return Math.sqrt(dx*dx + dy*dy);
}
<commit_msg>Add type annotations and interfaces
<commit_after>interface Point {
 x: number,
 y: number
}

function dist(p1: Point, p2: Point) {
 const dx = p2.x - p1.x;
 const dy = p2.y - p1.y;
 return Math.sqrt(dx*dx + dy*dy);
}

<commit_before>function dist(p1, p2) {
 const dx = p2.x - p1.x;
 const dy = p2.y - p1.y;
 return Math.sqrt(dx*dx + dy*dy);
}
<commit_msg>Add type annotations and interfaces
<commit_after>

30:30 to here (1:30 for this slide)

- My approach is to fine-tune StarCoder-7B, similar to how fill-in-the-middle works

- As I discussed in the introduction, StarCoder is an open large language model for code.

- One nice thing about StarCoder is that it was trained on a variety of formats, expanding its

capabilities.

- For example, it was trained on Git commits, in the following format.

- The special tokens denote original code before the commit, the commit message, and the

updated code after the commit.

- This way, the model learns to associate the commit message, which is a natural language

instruction, with code before and after following that instruction.

- For example, I can take a TypeScript program and treat it as the commit after.

- Then I can remove types and make it the code before a commit.

- Finally, I can make the commit message the instruction “Add type annotations and

interfaces.”

- That’s the training format. I call this the single-step migration, because it adds annotations and

definitions in a single step.

- During inference, the commit before is the original, untyped code

- The message is to add type definitions and interfaces

- And then the model generates the rest

24

Approach: multi-step migration, annotations

25

<commit_before>...
<commit_msg>...
<commit_after>function circleArea(c: Circle) {

return Math.PI * c.radius * c.radius;
}
function rectangleArea(r: Rectangle) {

return r.width * r.height;
}

<commit_before>function circleArea(c) {
 return Math.PI * c.radius * c.radius;
}
function rectangleArea(r) {
 return r.width * r.height;
}
<commit_msg>...
<commit_after>function circleArea(c: Circle) {

return Math.PI * c.radius * c.radius;
}
function rectangleArea(r: Rectangle) {

return r.width * r.height;
}

<commit_before>function circleArea(c) {
return Math.PI * c.radius * c.radius;

}
function rectangleArea(r) {

return r.width * r.height;
}
<commit_msg>Add type annotations
<commit_after>function circleArea(c: Circle) {

return Math.PI * c.radius * c.radius;
}
function rectangleArea(r: Rectangle) {

return r.width * r.height;
}

<commit_before>function circleArea(c) {
return Math.PI * c.radius * c.radius;

}
function rectangleArea(r) {

return r.width * r.height;
}
<commit_msg>Add type annotations
<commit_after>

32:00 to here (1:00 for this slide)

- Alternatively, there is multi-step migration.

- There are two training formats, so let’s look at annotations first.

- The commit after will be the code with type annotations but no definitions.

- To get the commit before, I delete the type annotations.

- Finally, the commit message is “Add type annotations.”

- Now during inference, I can provide the untyped code and the instruction to add type

annotations.

25

Approach: multi-step migration, definitions

26

<commit_before>...
<commit_msg>...
<commit_after>interface Circle {

position: Point;
radius: number;

}
function circleArea(c: Circle) {

return Math.PI * c.radius * c.radius;
}
function rectangleArea(r: Rectangle) {

return r.width * r.height;
}

<commit_before>function circleArea(c: Circle) {
 return Math.PI * c.radius * c.radius;
}
function rectangleArea(r: Rectangle) {
 return r.width * r.height;
}
<commit_msg>...
<commit_after>interface Circle {

position: Point;
radius: number;

}
function circleArea(c: Circle) {

return Math.PI * c.radius * c.radius;
}
function rectangleArea(r: Rectangle) {

return r.width * r.height;
}

<commit_before>function circleArea(c: Circle) {
return Math.PI * c.radius * c.radius;

}
function rectangleArea(r: Rectangle) {

return r.width * r.height;
}
<commit_msg>Add a type alias or interface for Circle
<commit_after>interface Circle {

position: Point;
radius: number;

}
function circleArea(c: Circle) {

return Math.PI * c.radius * c.radius;
}
function rectangleArea(r: Rectangle) {

return r.width * r.height;
}

<commit_before>function circleArea(c: Circle) {
return Math.PI * c.radius * c.radius;

}
function rectangleArea(r: Rectangle) {

return r.width * r.height;
}
<commit_msg>Add a type alias or interface for Circle
<commit_after>

33:00 to here (1:30 for this slide)

- The second training format is more complicated, and it’s to add definitions.

- Instead of trying to add all definitions at once, I’ll add them one at a time.

- The commit after will be code with type annotations and some type definitions.

- In this case, Circle has a definition but Rectangle does not.

- The commit before will be the code with a type definition removed, in this case Circle.

- Then the commit message will be “Add a type alias or interface for Circle.”

- Note how I’m specifically mentioning circle.

- Now during inference, I can customize the instruction to refer to a specific type.

26

Evaluation datasets
UNTYPED UNTYPED-HARD

27

with types removed

TypeWeaver dataset

Rollup

FunctionsLOCFilesPackagesDataset

4556,3395050UNTYPED

7237,6459150UNTYPED-HARD

34:30 to here (2:00 for this slide)

- For the evaluation, I construct two datasets.

- The first is Untyped.

- This is also constructed from The Stack, similar to the dataset in the previous section.

- The main difference is that these files contain type definitions.

- Because this dataset is constructed from TypeScript, it means each file has a fully typed

solution.

- The second is Untyped-Hard

- This is constructed from the TypeWeaver dataset.

- But the model handles single files and not projects.

- So I use Rollup, a JavaScript library for bundling projects into single files.

- Because this dataset is constructed from JavaScript, there is no guarantee that each file

can be migrated.

- To keep the datasets small, I sample 50 files from each dataset

- This table gives a sense of how large each file is.

27

Percentage of files that type check

28

0%

20%

40%

60%

80%

100%

StarCoder Single StarCoder Multi StenoType Multi

Untyped Untyped-Hard

25.4%

35.1%

47.2%

55.9% 58.7%
62.3%

0%

20%

40%

60%

80%

100%

StarCoder Single StarCoder Multi StenoType Multi

Untyped Untyped-Hard

36:30 to here (1:00 for this slide)

- I run my experiments on three configurations.

- StarCoder Single is the single-step migration approach with StarCoder-7B, with no

additional training.

- StarCoder Multi is the multi-step migration approach, also with StarCoder-7B.

- StenoType Multi is my system, fine-tuned for the multi-step approach.

- I evaluate on both Untyped and Untyped-Hard datasets, and count the percentage of files that

type check

- Multi-step is better than single-step, and StenoType shows further improvement.

28

29

0%

20%

40%

60%

80%

100%

StarCoder Single StarCoder Multi StenoType Multi

Untyped Untyped-Hard

Percentage of trivial annotations
(in files that type check)

8.2%

25.8%
20.1%

9.9%

0.0%

69.1%

0%

20%

40%

60%

80%

100%

StarCoder Single StarCoder Multi StenoType Multi

Untyped Untyped-Hard

���
����

��
���

���
����

�
�

����
����

���
���

37:30 to here (1:30 for this slide)

- Next, I want to look at the percentage of trivial type annotations, within the files that type check.

- Again, I count trivial as any, any[], and Function.

- For the Untyped dataset, multi-step makes it worse, but StenoType brings it back down again.

- For Untyped-Hard, StenoType generates significantly more trivial type annotations.

- But in this case, it’s important to look at the absolute numbers.

- Untyped-Hard generates significantly fewer type annotations in the first place.

29

30

0%

20%

40%

60%

80%

100%

StarCoder Single StarCoder Multi StenoType Multi

Untyped Untyped-Hard

Percentage of files correctly migrated
Correct = type checks + no mutations + some types added

4.8%

21.0%
25.7%

0.0% 0.0% 0.0%
0%

20%

40%

60%

80%

100%

StarCoder Single StarCoder Multi StenoType Multi

Untyped Untyped-Hard

39:00 to here (1:00 for this slide)

- Finally, I want to take a pessimistic view of type migration.

- I consider a migration to be correct if the following hold:

- The file type checks.

- The model did not mutate the code.

- So if I remove types from the output, the result should be identical to the input.

- At least one type annotation or definition was added.

- Doing nothing doesn’t count.

- The results are promising for Untyped, but none of the Untyped-Hard migrations were correct.

30

Future work

• Dataset quality

• Type prediction, revisited

• Generating type definitions, revisited

• Fully automated type migration

31

40:00 to here (2:30 for this slide)

- Before concluding, I want to briefly mention avenues for future work.

- There’s always room to improve the dataset quality.

- For training, there is no quality guarantee on The Stack.

- Type prediction, revisited

- One idea is to do type prediction in multiple steps.

- E.g. generate types, type check, then use the error messages to direct the model

to generate better types.

- Type generation, revisited

- Use an unsound static analysis, like constraint-based type inference, to generate a type

definition, then use machine learning to generate a name for that type.

- Non-ML approach: create a database of types from the training dataset, and then query

the dataset for missing types.

- Fully automated type migration

- I only covered type annotations and type definitions.

- There is more that can be done, including refactoring code.

- Also important to treat this as an end-to-end tool.

- Something that can actually be used.

- And the process of building these tools will uncover new problems to study.

- I’m pleased to see that there are already students in our lab who are building on this work.

31

Conclusion

32

Thank you!

Do Machine Learning Models

Produce TypeScript Types

That Type Check? [ECOOP 2023]

Yee and Guha

Type Prediction With

Program Decomposition and

Fill-in-the-Type Training
[submitted to COLM 2024]

Cassano, Yee, Shinn, Guha, and Holtzen

Generating TypeScript Type

Definitions with Machine

Learning

Machine learning can be used to partially migrate JavaScript programs to

TypeScript, by predicting type annotations and generating type definitions.

42:30 to here (1:00 for this slide)

- To conclude, my thesis is that I can use machine learning to partially migrate JavaScript programs

to TypeScript, by predicting type annotations and generating type definitions.

- To support this thesis, I have three contributions.

- The first is a paper, published at ECOOP, is about evaluating type prediction models.

- The second paper, submitted to COLM, is about training models for the specific task of

type prediction.

- The third is the new material I presented today, to generate type definitions.

- I believe these three contributions validate my thesis.

- Thank you everyone, and I’m happy to take questions now.

32

