
Do Machine Learning Models
Produce TypeScript Types

That Type Check?

Ming-Ho Yee1 and Arjun Guha1,2

1Northeastern University
2Roblox

July 20, 2023

ECOOP 2023

- 0:15 for this slide

- Hello everyone, and thanks for coming to my presentation.

- Today, I want to talk about TypeScript, machine learning models that predict TypeScript types,

and how we can evaluate these systems.

1

Type migrationType migrationType migrationType migration: JavaScript to TypeScript

• Incremental migration

• Static type checking

• Better documentation

• Editor integration

2

- 1:00 to finish this slide

- So, let’s say you have a code base in JavaScript, and you want to migrate it to TypeScript.

- You can do this by incrementally adding type annotations to your code.

- As your code becomes more typed, you benefit from static type checking, better

documentation, and editor integration.

- For example, here’s a small code fragment.

- The code is untyped, so my text editor can’t provide me with useful information.

- But if we look at a typed version of that fragment, we see that s is annotated as a string.

- As a result, my text editor can show me the methods available on a string.

- So there are clear benefits for using TypeScript, and a migration path to get from JavaScript to

TypeScript.

- Unfortunately, manual type migration is a laborious process.

2

Machine learning for type prediction

Predict the most likely type annotation for the given code fragment

DeepTyper [ESEC/FSE 2018] LambdaNet [ICLR 2020] InCoder [ICLR 2023]

function f(x) {
return x + 1;

}

ProbabilityType of x

0.4221number

0.2611any

0.2558string

other

ProbabilityType of x

0.9512string

0.0474number

0.0006Function

other

function f(x: _hole_) {
return x + 1;

}

function f(x: number) {
return x + 1;

}

3

- 3:00 to finish this slide

- To automate type migration, there has been research in using machine learning approaches.

- The idea is to frame the problem as type prediction: “Predict the most likely type

annotation for the given code fragment.”

- For our paper, we studied three systems, but any system can be adapted for our framework.

- DeepTyper (ESEC/FSE 2018) was an early work and uses a recurrent neural network.

- LambdaNet (ICLR 2020) uses a graph neural network.

- InCoder (ICLR 2023) is a general-purpose, multi-language transformer

- DeepTyper and LambdaNet are similar:

- Given a code fragment, for each identifier, they produce a list of the most likely type

annotations and their probabilities.

- You can think of the output as a table of results.

- I’ve only shown the type predictions for x, which is the only identifier that can be

annotated.

- InCoder is a bit different, because it supports a “fill-in-the-middle” task.

- We can insert a hole into where the type annotation should go, and InCoder will condition

on the text before and after the hole as context and predict what goes into the middle.

- InCoder returns an updated code fragment, with the hole filled in as “number.”

- How do we know these models are doing the right thing? What do we do for evaluation?

3

TypeWeaverTypeWeaverTypeWeaverTypeWeaver: type check the type annotations

4

Prior work:

TypeScript

dataset

Type

annotations AccuracyCompare
Remove type

annotations

Type prediction

model

This talk

Our tool (TypeWeaver):

JavaScript

dataset
Type prediction

model

Type

annotations Result
TypeScript

compiler

Type

weaving
TypeScript

1 2 3

Accuracy =
correct predictions

total predictions

- 5:00 to finish this slide

- In our paper, we propose type checking the type annotations; we created TypeWeaver to do this.

- To recap, let’s walk through the existing evaluation workflow:

- We start with a TypeScript dataset.

- The type annotations are removed, and the untyped code is given to a type prediction

model, which produces type annotations.

- The predicted type annotations are then compared to the original type annotations, and

accuracy is computed.

- Accuracy is the number of correct predictions divided by the total number of

predictions.

- Correct means an exact textual match, and requires a ground truth of existing,

handwritten type annotations.

- In our paper, we propose and use a different workflow.

- We start with a JavaScript dataset, and feed that to the type prediction model.

- We want our evaluation to reflect how type migration would be done in practice,

which is to migrate JavaScript to TypeScript.

- Next, we perform a step called type weaving, which combines the type annotations with

the original JavaScript code to produce TypeScript.

- This allows us to run the type checker on the code, and we get a result.

- For the rest of this talk, I’ll be discussing three contributions: our dataset, type weaving, and our

results.

4

Constructing the JavaScript dataset

1. Top 1,000 most
downloaded
packages

2. Download source
code

3. Filter and clean

4. Check dependencies

5

Dependencies?

No

✅ Are they typed?

Yes

❌

No

✅

Yes

1

Result: 513 packages

- 7:00 to finish this slide

- Our first contribution is our dataset.

- We start with the top 1,000 most downloaded packages from the npm Registry.

- Next, we download the source code from GitHub.

- Then we apply several filtering and cleaning steps.

- For example, some packages do not contain any code, or were implemented in some

other language, so we filter those out.

- Finally, we check the package dependencies.

- If there are no dependencies, then we’re all set, and we can use the package as-is.

- If the package has dependencies, we must ensure that we handle those dependencies.

- Fortunately, we only need the type declarations for the dependencies, not the

entire source code.

- There is a community-maintained repository called DefinitelyTyped, where

developers contribute type declarations for popular packages.

- If we can’t find type declarations for a dependency, then we discard the package.

- In other words, we ensure that if a package has dependencies, then all those

dependencies are typed.

- This leaves us with a final dataset of 513 packages.

5

Type weavingType weavingType weavingType weaving: JS + type annotations = TS

6

FunctionDeclaration
Identifier
Parameter
Identifier

Parameter
Identifier

Block
ReturnStatement
…

ProbabilityTypeToken

function

0.6381stringf

(

0.4543stringx

,

0.4706numbery

)

{

return

0.3861numberx

+

0.5039numbery

;

}

function f(x, y) {
return x + y;

}

function f(x, y): string {
return x + y;

}

function f(x: string, y): string {
return x + y;

}

function f(x: string, y: number): string {
return x + y;

}

2

- 9:00 to finish this slide

- Our second contribution is type weaving: this is the process where JavaScript is combined with

type annotations to produce TypeScript.

- There are some tricky implementation details, but the overall idea is simple.

- Let’s walk through an example. We start with JavaScript code.

- Next, we take the type predictions from the model.

- For this example, I only list the most likely prediction for each token, and I’ve also

cleaned up the table a little.

- I made up this example and gave it to a system.

- We use the TypeScript compiler to parse the JavaScript to get an abstract syntax tree.

- Now we traverse the syntax tree, and every time we encounter a declaration node, we

look up the type prediction from the table, and update the program.

- In this example, we find the function f has return type string, x is string, and y is

number.

- There are other types in this table, assigned to other identifiers, but we ignore

them for simplicity.

- The result is an annotated TypeScript file.

- And this program actually type checks, even though it’s not what was intended.

- The number is coerced to a string and + is string concatenation, so the function returns a

string.

- Now we are ready to type check.

6

Do migrated packages type check?

7

20.7%

8.9%

19.1%

0%

20%

40%

60%

80%

100%

DeepTyper LambdaNet InCoder

%
 p

a
ck

a
g

e
s

th
a

t
ty

p
e

 c
h

e
ck

3

- So the first question to ask is: do migrated packages type check?

- Unfortunately, the results are disappointing.

- DeepTyper and InCoder perform about the same, with a 20% success rate, while LambdaNet is

closer to 9%.

- Type checking is a very high standard, because all type annotations need to be correct.

- Even a single incorrect type annotation will cause a package to fail to type check.

- If you were someone trying to migrate their JavaScript project, this metric isn’t very helpful.

- It simply gives you a pass/fail result for an entire package.

- So let’s ask a different, more fine-grained question.

7

Do migrated files type check?

8

43.4%

25.2%

69.2%

0%

20%

40%

60%

80%

100%

DeepTyper LambdaNet InCoder

%
 f

il
e

s
th

a
t

ty
p

e
 c

h
e

ck
3

- Do migrated files type check?

- Instead of grading an entire package, we grade each file individually.

- Our intuition is that each file is a separate module and can be type checked individually.

- This seems to be a reasonable way to triage errors, when trying to migrate an entire

package.

- However, we still need to be aware that even if a module type checks successfully, we

may need to adjust its type annotations if it isn’t consistent with other modules.

- This result is much more promising: InCoder has a success rate of 69%.

8

How many type annotations are trivial?

9

59.5%

24.5%

40.8%

0%

20%

40%

60%

80%

100%

DeepTyper LambdaNet InCoder

%
 t

ri
v
ia

l
a

n
n

o
ta

ti
o

n
s

3

(within the files that type check)

- 12:00 to finish this slide

- Finally, there’s one more chart I’d like to show.

- We need to be careful with our metric, because we can “cheat” by predicting “any” for all type

annotations.

- This result will type check, but the type annotations are useless, and no different from

having an untyped program.

- So we counted the proportion of type annotations that are trivial.

- These are the type annotations for the files that type checked.

- This is “any” and related type annotations, like array of any, or the generic Function type

with unspecified argument types.

- These results are interesting:

- On the previous slides, DeepTyper performed better than LambdaNet.

- But now we see that may be because DeepTyper predicted more trivial types.

- InCoder was somewhere in between but still performed the best.

9

Conclusion: TypeWeaver

10

20.7%
8.9%

19.1%

0%

20%

40%

60%

80%

100%

DeepTyper LambdaNet InCoder

%
 p

k
g

 t
y

p
e

 c
h

e
ck

Do machine learning models produce

TypeScript types that type check?

43.4%

25.2%

69.2%

0%

20%

40%

60%

80%

100%

DeepTyper LambdaNet InCoder

%
 f

il
e

s
ty

p
e

 c
h

e
ck Open questions:

• How should we evaluate type

prediction models?

• Can slightly wrong annotations be

useful?

Thank you!

https://github.com/nuprl/TypeWeaver

JavaScript

dataset
Type prediction

model

Type

annotations Result
TypeScript

compiler

Type

weaving
TypeScript

- 13:00 to finish this slide

- So, to summarize our work:

- We built TypeWeaver, a framework for evaluating type prediction systems.

- It uses our JavaScript dataset, but it’s possible to build your own dataset.

- We run the dataset through type prediction models, and you can plug in your own model.

- The model produces type annotations, and we perform type weaving to get TypeScript.

- And this allows us to type check the resulting code.

- Now, we can finally answer the question: do machine learning models produce TypeScript types

that type check?

- If we’re asking about packages, the results are a bit disappointing.

- But if we look at individual files, the results are more promising.

- Of course, there are more avenues for future work and open questions to answer:

- How should we evaluate type prediction models? Can we do better than type checking?

- What if a system produces types that are “slightly wrong”? They would fail to type check,

but how can we use those types?

- I’d be happy to chat if you have any thoughts about this.

- Thanks for listening to my talk, and I can take questions now.

10

