Do Machine Learning Models
Produce TypeScript Types
That Type Check?

Ming-Ho Yee! and Arjun Guhal?

INortheastern University
2Roblox

July 20, 2023
ECOOP 2023

- 0:15 for this slide

- Hello everyone, and thanks for coming to my presentation.

- Today, | want to talk about TypeScript, machine learning models that predict TypeScript types,
and how we can evaluate these systems.

Type migration: JavaScript to TypeScript

* Incremental migration
* Static type checking

:> * Better documentation
* Editor integration

function f(s) { function f(s: string) {
; return s.| | return s.|
Iy AE b @Symbol interface Symbolvar
3 @ charAt
@ charCodeAt
@ codePointAt
@ concat

1:00 to finish this slide
So, let’s say you have a code base in JavaScript, and you want to migrate it to TypeScript.
- You can do this by incrementally adding type annotations to your code.
- Asyour code becomes more typed, you benefit from static type checking, better
documentation, and editor integration.
For example, here’s a small code fragment.
- The code is untyped, so my text editor can’t provide me with useful information.
But if we look at a typed version of that fragment, we see that s is annotated as a string.
- Asaresult, my text editor can show me the methods available on a string.
So there are clear benefits for using TypeScript, and a migration path to get from JavaScript to
TypeScript.
- Unfortunately, manual type migration is a laborious process.

Machine learning for type prediction

Predict the most likely type annotation for the given code fragment

DeepTyper [esec/rse 2018] LambdaNet [ictr 2020 InCoder (ictr 2023]
function f(x) { function f(x: _hole_) {
return x + 1; return x + 1;
} }
Type of x Probability Type of x Probability
number 0.4221 string 0.9512 function f(x: number) {
any 0.2611 number 0.0474 return x + 1;
string 0.2558 Function 0.0006 }
other other

3:00 to finish this slide
To automate type migration, there has been research in using machine learning approaches.
- The idea is to frame the problem as type prediction: “Predict the most likely type
annotation for the given code fragment.”
For our paper, we studied three systems, but any system can be adapted for our framework.
- DeepTyper (ESEC/FSE 2018) was an early work and uses a recurrent neural network.
- LambdaNet (ICLR 2020) uses a graph neural network.
- InCoder (ICLR 2023) is a general-purpose, multi-language transformer
DeepTyper and LambdaNet are similar:
- Given a code fragment, for each identifier, they produce a list of the most likely type
annotations and their probabilities.
- You can think of the output as a table of results.
- I've only shown the type predictions for x, which is the only identifier that can be
annotated.
InCoder is a bit different, because it supports a “fill-in-the-middle” task.
- We can insert a hole into where the type annotation should go, and InCoder will condition
on the text before and after the hole as context and predict what goes into the middle.
- InCoder returns an updated code fragment, with the hole filled in as “number.”
How do we know these models are doing the right thing? What do we do for evaluation?

TypeWeaver: type check the type annotations

correct predictions

. A =
Prior work: ey = Total predictions

TypeScript Remove type Type prediction Type
dataset annotations model annotations Compare Accuracy

T

Our tool (TypeWeaver):

JavaScript
dataset

Type
annotations

Type prediction
model

Type
weaving

TypeSc'rlpt —'< Result
compiler

Y This talk

- 5:00 to finish this slide
- In our paper, we propose type checking the type annotations; we created TypeWeaver to do this.
- Torecap, let’s walk through the existing evaluation workflow:
- We start with a TypeScript dataset.
- The type annotations are removed, and the untyped code is given to a type prediction
model, which produces type annotations.
- The predicted type annotations are then compared to the original type annotations, and
accuracy is computed.
- Accuracy is the number of correct predictions divided by the total number of
predictions.
- Correct means an exact textual match, and requires a ground truth of existing,
handwritten type annotations.
- In our paper, we propose and use a different workflow.
- We start with a JavaScript dataset, and feed that to the type prediction model.
- We want our evaluation to reflect how type migration would be done in practice,
which is to migrate JavaScript to TypeScript.
- Next, we perform a step called type weaving, which combines the type annotations with
the original JavaScript code to produce TypeScript.
- This allows us to run the type checker on the code, and we get a result.

- Forthe rest of this talk, I'll be discussing three contributions: our dataset, type weaving, and our
results.

Constructing the JavaScript dataset

Dependencies?

1. Top 1,000 most I
downloaded m
packages

2. Download source ° Are they typed?
GitHub

code

|
3. Filter and clean
X

4. Check dependencies

Result: 513 packages

5

- 7:00 to finish this slide
- Our first contribution is our dataset.
- We start with the top 1,000 most downloaded packages from the npm Registry.
- Next, we download the source code from GitHub.
- Then we apply several filtering and cleaning steps.
- For example, some packages do not contain any code, or were implemented in some
other language, so we filter those out.
- Finally, we check the package dependencies.
- If there are no dependencies, then we’re all set, and we can use the package as-is.
- If the package has dependencies, we must ensure that we handle those dependencies.
- Fortunately, we only need the type declarations for the dependencies, not the
entire source code.
- There is a community-maintained repository called DefinitelyTyped, where
developers contribute type declarations for popular packages.
- If we can’t find type declarations for a dependency, then we discard the package.
- In other words, we ensure that if a package has dependencies, then all those
dependencies are typed.
- This leaves us with a final dataset of 513 packages.

Type weaving: JS + type annotations = TS

Token Type Probability
function f(x: string, y: number): string { function
X +y f string 0.6381
t C
X string 0.4543
FunctionDeclaration 0
Identifier y number 0.4706
Parameter)
Identifier
Parameter {
Identifier return
Block X number 0.3861
ReturnStatement .
y number 0.5039
}

¥

- 9:00 to finish this slide

- Our second contribution is type weaving: this is the process where JavaScript is combined with

type annotations to produce TypeScript.

- There are some tricky implementation details, but the overall idea is simple.

- Let’s walk through an example. We start with JavaScript code.

- Next, we take the type predictions from the model.

- For this example, | only list the most likely prediction for each token, and I've also

cleaned up the table a little.
- I made up this example and gave it to a system.

- We use the TypeScript compiler to parse the JavaScript to get an abstract syntax tree.
- Now we traverse the syntax tree, and every time we encounter a declaration node, we

look up the type prediction from the table, and update the program.

- In this example, we find the function f has return type string, x is string, and y is

number.

- There are other types in this table, assigned to other identifiers, but we ignore

them for simplicity.
The result is an annotated TypeScript file.

- And this program actually type checks, even though it’s not what was intended.
- The number is coerced to a string and + is string concatenation, so the function returns a

string.
- Now we are ready to type check.

Do migrated packages type check?

100%
4
(&)
2 80%
(&)
(]
o
Z 60%
T
=
o 40%
[sTy]
Y,
o 0% 20.7% 19.1%
0
0%]
DeepTyper LambdaNet InCoder

So the first question to ask is: do migrated packages type check?
- Unfortunately, the results are disappointing.
DeepTyper and InCoder perform about the same, with a 20% success rate, while LambdaNet is
closer to 9%.
Type checking is a very high standard, because all type annotations need to be correct.
- Even asingle incorrect type annotation will cause a package to fail to type check.
If you were someone trying to migrate their JavaScript project, this metric isn’t very helpful.
- It simply gives you a pass/fail result for an entire package.
So let’s ask a different, more fine-grained question.

Do migrated files type check?

100%

80%

69.2%

60%
43.4%
40%
25.2%

% files that type check

20%

0%
DeepTyper LambdaNet InCoder

- Do migrated files type check?
- Instead of grading an entire package, we grade each file individually.
- Our intuition is that each file is a separate module and can be type checked individually.
- This seems to be a reasonable way to triage errors, when trying to migrate an entire
package.
- However, we still need to be aware that even if a module type checks successfully, we
may need to adjust its type annotations if it isn’t consistent with other modules.
- This result is much more promising: InCoder has a success rate of 69%.

¢

How many type annotations are trivial?
(within the files that type check)

100%
w 80%
c
0
T 59.5%
5 60%
c
© 40.8%
= 0,
zg 40%
= 24.5%
o -

0%
DeepTyper LambdaNet InCoder

12:00 to finish this slide
Finally, there’s one more chart I'd like to show.
We need to be careful with our metric, because we can “cheat” by predicting “any” for all type
annotations.
- This result will type check, but the type annotations are useless, and no different from
having an untyped program.
So we counted the proportion of type annotations that are trivial.
- These are the type annotations for the files that type checked.
- This is “any” and related type annotations, like array of any, or the generic Function type
with unspecified argument types.
These results are interesting:
- Onthe previous slides, DeepTyper performed better than LambdaNet.
- But now we see that may be because DeepTyper predicted more trivial types.
- InCoder was somewhere in between but still performed the best.

Conclusion: TypeWeaver

JavaScript
dataset

Type
annotations

Type prediction
model

Type
weaving

TypeSc.r|pt { Result >
compiler

https://github.com/nuprl/TypeWeaver

Do machine learning models produce
TypeScript types that type check?

100% .
° Open questions:

80% 69.2% * How should we evaluate type

60% 43.4% prediction models?
40% 5% * Can slightly wrong annotations be
. (o] b}
20% l - useful?
0%

DeepTyper LambdaNet InCoder

% files type check

10

13:00 to finish this slide
So, to summarize our work:
- We built TypeWeaver, a framework for evaluating type prediction systems.
- It uses our JavaScript dataset, but it’s possible to build your own dataset.
- We run the dataset through type prediction models, and you can plug in your own model.
- The model produces type annotations, and we perform type weaving to get TypeScript.
- And this allows us to type check the resulting code.
Now, we can finally answer the question: do machine learning models produce TypeScript types
that type check?
- If we're asking about packages, the results are a bit disappointing.
- Butif we look at individual files, the results are more promising.
Of course, there are more avenues for future work and open questions to answer:
- How should we evaluate type prediction models? Can we do better than type checking?
- What if a system produces types that are “slightly wrong”? They would fail to type check,
but how can we use those types?
I’d be happy to chat if you have any thoughts about this.
Thanks for listening to my talk, and | can take questions now.

10

