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Type information is useful for developing large-scale software systems. Types help prevent bugs, but may

be in�exible and hamper quick iteration on early prototypes. TypeScript, a syntactic superset of JavaScript,

brings the best of both worlds, allowing programmers to freely mix statically and dynamically typed code,

and choose the level of type safety they wish to opt into. However, type migration, the process of migrating

an untyped program to a typed version, has remained a labour-intensive manual e�ort in practice. As a �rst

step towards automated e�ective type migration, there has been interest in applying machine learning to the

narrower problem of type prediction.

In my thesis, I propose to use machine learning to partially migrate JavaScript programs to TypeScript, by

predicting type annotations and generating type de�nitions. To support my thesis, I make three contributions.

First, I propose evaluating type prediction by type checking the generated annotations instead of computing

accuracy. Second, I �ne-tune a large language model with �ll-in-the-middle capability to �ll-in-the-type and

predict type annotations. Finally, I use a similar approach to �ne-tune a large language model to generate

missing type de�nitions.

1 INTRODUCTION

Type information is useful for developing large-scale software systems. Types help prevent bugs,
provide documentation, and improve support for editors and development tools. At the same
time, types can be in�exible and may hamper quick iteration on early prototypes. Gradual typing
brings the best of both worlds, allowing programmers to freely mix statically and dynamically
typed code, and choose the level of type safety they wish to opt into [31, 66, 70, 71]. This makes
it possible to incrementally add static types to a large program without requiring a complete
rewrite of an existing codebase at once. As a result, gradual typing has proliferated over the
past decade, and there are now gradually typed versions of several mainstream programming
languages [9, 10, 16, 19, 45, 47, 54, 70, 72, 81].
One success story is TypeScript, a syntactic superset of JavaScript that supports optional type

annotations [9]. Both languages are very popular: JavaScript is listed as the top programming
language on GitHub and Stack Over�ow, while TypeScript ranks in the top �ve [30, 68]. Program-
mers can write their code in TypeScript, bene�t from static typing, and then compile to JavaScript.
However, type migration, the process of migrating an untyped JavaScript program to TypeScript,
has remained a labour-intensive manual e�ort in practice. For example, Airbnb engineers took more
than two years to migrate 6 million lines of JavaScript [63], and there are several other accounts of
multi-year TypeScript migration e�orts [6, 11, 52, 56, 62].
As a �rst step towards e�ective automated type migration, there has been signi�cant research

interest in using machine learning to attack the narrower problem of type prediction. Compared to
type migration, which may involve refactoring code that is not well typed, the objective of type
prediction is to maximize the likelihood of a correct type prediction given a code fragment [1,
32, 37, 39, 46, 50, 55, 57, 58, 60, 74, 76, 79]. Type prediction is appealing because machine learning
models can take into account the linguistic context of the code fragment. Furthermore, there is a
signi�cant quantity of high-quality, open-source JavaScript and TypeScript code that is available to
serve as training data [35, 38, 42, 49, 75]. In particular, large language models (LLMs) are successful
at a variety of code generation tasks [4, 5, 8, 14, 20, 21, 36, 53, 75], and recent work presents
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�ll-in-the-middle (FIM) inference in which the model learns editing tasks while still performing
left-to-right token generation [7, 26].
However, there are limitations in existing work, which I aim to address in my dissertation

research:

1. Machine learning models for type prediction are typically evaluated on accuracy, which is
the proportion of type predictions that are correct. However, calculating accuracy requires a
ground truth of existing type annotations, which is not available when migrating JavaScript
code, and accuracy says nothing about whether the migrated code will type check. I proposed
type checking the migrated programs [79], and as part of this work I created an evaluation
dataset and built TypeWeaver, a system for evaluating type prediction systems.

2. Large language models with �ll-in-the-middle capabilities have neither been trained for nor
evaluated on the type prediction task, other than small-scale evaluations [26, 44]. I created an
improved evaluation dataset and worked on a new �ne-tuning approach called �ll-in-the-type
that adapts �ll-in-the-middle for type prediction [15].

3. The related problem of generating type de�nitions has not been studied. This is particularly
relevant when migrating JavaScript to TypeScript, as TypeScript has a structural type system
and the migrated code may refer to types that need to be de�ned. Working on this problem
is the last piece of my thesis work and is ongoing: to generate type de�nitions in addition to
predicting type annotations for untyped JavaScript programs.

In this document, I state my proposed thesis (section 2) and describe how my completed and
future work supports that thesis; namely, evaluating type prediction (section 3), training and
prompting for type prediction (section 4), and generating type de�nitions (section 5). I conclude
with a proposed schedule (section 6) and a discussion of related work (section 7).

2 THESIS

My dissertation research has focused on how machine learning can be used to migrate JavaScript
programs to TypeScript. However, the scope of that problem is too large for a single dissertation,
so I focus on the narrower problems of type annotation prediction and type de�nition generation.
Therefore, my thesis is:

Machine learning can be used to partially migrate JavaScript programs to TypeScript, by predicting

type annotations and generating type de�nitions.

Below, I elaborate on each component of the thesis statement.

Machine learning. My work uses machine learning models, speci�cally large language models,
and in particular, open-source models such as SantaCoder [8] and StarCoder [44].

Partial migration. I do not believe it is currently possible to fully migrate a JavaScript program
to TypeScript using machine learning. Therefore, I focus on aspects of migration, and
acknowledge that some manual refactoring may be required.

JavaScript to TypeScript. I restrict my work to JavaScript and TypeScript, which are listed within
the top �ve programming languages on GitHub and Stack Over�ow [30, 68]. Handling a
popular programming language involves challenges not present for smaller languages like
the gradually typed lambda calculus and its extensions.

Predicting type annotations and generating type de�nitions. My dissertation studies these
two speci�c tasks, which are part of type migration.

To support my thesis, I make three contributions:
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Fig. 1. TypeWeaver workflow: a JavaScript dataset is given to a type prediction model, which returns type
annotations; next, type weaving merges the type annotations with the original JavaScript code and produces
TypeScript; finally, the TypeScript is type checked by the TypeScript compiler.

1. Before working on the problem, it is important to de�ne how it will be measured. In Yee
and Guha [79], which was published at ECOOP 2023, I proposed evaluating type prediction
systems by type checking the generated types, rather than using the typical metric of accuracy.

2. I approach the task of predicting type annotations in Cassano et al. [15], which was submitted
to NeurIPS 2023. In this paper, we adapt the �ll-in-the-middle training technique to �ne-tune
a model that �lls in type annotations.

3. Finally, taking lessons from the previous two papers, I propose work on the �nal part of my
thesis, which is using large language models to generate type de�nitions.

3 EVALUATING TYPE PREDICTION MODELS

In prior work, the usual evaluation criteria for the type annotation prediction task has been
accuracy: what is the likelihood that a predicted type annotation is correct? Correct means the
prediction exactly matches the ground truth, which is the handwritten type annotation at that
location. Accuracy is typically measured as top-: accuracy, where a prediction is deemed correct if
any of the top : most probable predictions is correct. Thus, a top-1 accuracy is the likelihood that
the top prediction is correct.

However, in Yee and Guha [79], I argued that accuracy is not the right metric for evaluating a type
prediction model and can be misleading. First, when migrating a JavaScript project to TypeScript,
there is frequently no ground truth of handwritten type annotations. Second, equivalent annotations
that are not exact textual matches (e.g., the union types number | string vs. string | number)
are counted as incorrect. Third, the predicted type annotations may not type check, requiring the
programmer to manually resolve type errors.
As a �rst step towards better evaluation criteria, I proposed type checking the predicted type

annotations. This condition is much stronger than accuracy, as even a single, incorrect type
annotation causes a package to fail to type check, and too many errors may overwhelm a user who
may just turn o� the tool. Moreover, it may not be feasible to �x the type errors automatically,
since type errors refer to code locations whose typed terms are used, and not necessarily to faulty
annotations. On the other hand, type checking may allow less precise type annotations that are
trivial and unhelpful to a user, e.g. any.

3.1 Approach

I built TypeWeaver, a framework for evaluating TypeScript type prediction models [80], and
evaluated three systems: DeepTyper, a bidirectional recurrent neural network [32]; LambdaNet,
a graph neural network [74]; and InCoder, a general-purpose, multi-language transformer that
supports �ll-in-the-middle tasks [26].

The work�ow for TypeWeaver is illustrated in Figure 1. First, the process starts with a JavaScript
dataset that I created. Second, the JavaScript code is given to one of the supported type prediction
models: DeepTyper, LambdaNet, and InCoder. Finally, the TypeScript code is type checked by the
TypeScript compiler and the results are recorded.
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3.1.1 Dataset. I created a JavaScript dataset of 513 packages, taken from the top 1,000 most down-
loaded packages from the npm Registry. This was because existing datasets for type prediction,
including ManyTypes4TypeScript [38], were in TypeScript, not JavaScript, and I believe the eval-
uation should re�ect what would occur in practice, i.e., migrating from an untyped JavaScript
codebase to TypeScript. Additionally, ManyTypes4TypeScript is given as pairs of tokens and labels,
which is not suitable for a type checking metric.

In constructing my dataset, I ensured that every package has no dependencies, or that all its
dependencies are typed, meaning the dependencies have TypeScript type declaration (.d.ts) �les
available. This requirement is necessary because a JavaScript package can only be imported into a
TypeScript project if its interface has TypeScript type declarations. The De�nitelyTyped repository1

contains interface type declarations for many popular JavaScript packages, and a handful of
packages include their own. I collected the type declarations of project dependencies and include
them in the dataset.
Next, I converted projects from CommonJS module notation to ECMAScript module notation.

This step is important for the type checking evaluation, as most packages use the CommonJS
module system, but CommonJS modules in TypeScript are untyped. Therefore, even if a module
has type annotations for the variables and functions it exports, those annotations are lost when the
module is imported. On the other hand, ECMAScript modules preserve type information across
module boundaries. Thus, I used the cjs-to-es6 tool2 o�-the-shelf to transform the dataset to use
ECMAScript modules.

3.1.2 Type Prediction. Given JavaScript input, DeepTyper and LambdaNet output type annotations:
DeepTyper predicts types for all identi�ers in the program, including at program locations that do
not allow type annotations, while LambdaNet predicts types for variable and function declarations,
but only in the correct locations. However, an additional step I call type weaving is required to �lter
and merge the type annotations with the original JavaScript, in order to produce valid TypeScript
code. On the other hand, InCoder outputs TypeScript directly, but it requires a type prediction front
end that we implemented. Currently, our front end only supports type predictions for function
parameters.

Type weaving. To produce type-annotated TypeScript code, I use a process called type weaving to
combine type predictions with the original JavaScript code. Type weaving takes two �les as input:
a JavaScript source �le and an associated comma-separated values (CSV) with type predictions.
The type weaving program parses the JavaScript source into an abstract syntax tree (AST) and
then traverses the AST and CSV �le simultaneously, using the TypeScript compiler to insert type
annotations into the program AST. To my knowledge, this is the �rst time such a tool has been
implemented for DeepTyper or LambdaNet, meaning that this is the �rst time those tools have
been used to output TypeScript, which can then be type checked.

Type prediction front end. InCoder is trained to generate code in the middle of a program,
conditioned on the surrounding code. This is useful for type prediction, as “holes” can be inserted
at type annotation sites. However, this required implementing a type prediction front end, which
transforms the JavaScript input into the appropriate format for InCoder to generate type annotations.
Furthermore, we observed that InCoder frequently generates more than just a single type, so our
front end also parses the generated response from InCoder and extracts the �rst syntactically valid
type.

1https://github.com/De�nitelyTyped/De�nitelyTyped/
2https://github.com/nolanlawson/cjs-to-es6

https://github.com/DefinitelyTyped/DefinitelyTyped/
https://github.com/nolanlawson/cjs-to-es6
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Table 1. Number and percentage of packages and files that type check.

DeepTyper LambdaNet InCoder

✓ Total % ✓ Total % ✓ Total %

Packages 95 460 20.7 39 439 8.9 94 493 19.1
Files 746 1,720 43.4 731 2,905 25.2 2,569 3,710 69.2

Table 2. Number and percentage of type annotations that are any, any[], or Function.

DeepTyper LambdaNet InCoder

Trivial Total % Trivial Total % Trivial Total %

Annotations 2,045 3,435 59.5 580 2,363 24.5 987 2,418 40.8

3.1.3 Type Checking. The �nal step is to type check to generated TypeScript code. I use the
TypeScript compiler, con�gured to accept all TypeScript input �les as arguments, and with all
package dependencies resolvable by the compiler. I save all results and compiler messages for
further analysis.

3.2 Results

The �rst question to ask is do migrated packages type check? However, not all packages successfully
translate to TypeScript with every type migration tool; some packages cause the tool to time out or
error. Thus, I report the success rate of type checking as a fraction of the packages that successfully
translate to TypeScript. The “packages” row of Table 1 summarizes the result: DeepTyper and
InCoder perform similarly, with about 20.7% and 19.1% of packages that type check, while only
8.9% of packages migrated by LambdaNet type check.
However, requiring an entire package to type check is a very high standard to meet. Even a

single incorrect type annotation causes the entire package to fail to type check. Therefore, as a
more �ne-grained metric, the second question asks do migrated �les type check? The “�les” row of
Table 1 summarizes the result: now InCoder performs the best with 69.2% of its �les type checking
successfully, whereas the results are 43.4% for DeepTyper and 25.2% for LambdaNet.

One limitation of type checking as a metric is that trivial type annotations, such as, any, any[]
(array of anys), and Function (a function that accepts any number of arguments of any type and
returns any), can hide type errors and allow more code to type check, but provide little value to a
programmer. Therefore, within the �les that type check, I count the number of type annotations
that are any, any[], or Function. Table 2 summarizes the result: DeepTyper produces the most
(59.5%), LambdaNet produces the fewest (24.5%), while InCoder is in between (40.1%).

3.3 Takeaways

There are several lessons and takeaways from this work:

• I argue that when evaluating type prediction systems, type checking is an improvement over
accuracy; however, type checking has its own limitations. For example, requiring an entire
package to type check is signi�cant burden, so it may be better to type check individual �les.
Additionally, trivial type annotations like any can hide type errors and allow more code to
type check, but are imprecise and provide little value to a programmer.
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1 function f(x) {

2 return x + 1;

3 }

(a) Input function

4 function f(x: number, y: number ) {

5 return x + 1;

6 }

(b) The highlighted “type annotation” is filled in

Fig. 2. A example where fill-in-the-middle generates additional code.

• InCoder was trained to in�ll code that typically spans multiple lines; as a result, InCoder
frequently generates more than a single type. I believe that InCoder could be improved if it
was �ne-tuned speci�cally for type prediction.

• The dataset could be improved: I observed packages that were trivially typable, either because
there were very few declarations to annotate, or because the type annotations were mostly
primitive types. Additionally, there are also JavaScript �les that cannot be typed in TypeScript
without some amount of refactoring. Finally, it may be worthwhile to consider the run-time
behaviour of migrated programs, since it is possible for a package to type check but still
have run-time errors.

I address some of these issues in a follow-up paper with Cassano et al. [15].

3.4 Publication Status

This work was submitted to, accepted at, and presented at ECOOP 2023, the European Conference
on Object-Oriented Programming [79]. Additionally, the artifact was submitted, evaluated, and
awarded the Available and Reusable badges [80].

4 TRAINING TYPE PREDICTION MODELS

Large language models are successful at a variety of code generation tasks, and �ll-in-the-middle is
a natural �t for type prediction. However, in Cassano et al. [15], we �nd several challenges that
prevent these models from working out-of-the-box. First, �ll-in-the-middle models are trained
to in�ll code that typically spans multiple lines, which inhibits their ability to infer end tokens
after short token sequences such as type annotations. Second, models generally do not understand
the implicit type constraints within a program, which produces programs that may not type
check [60, 79]. These errors are tedious for human programmers to manually resolve. Third, entire
programs are often very large and may not �t within a context window. This problem exists more
broadly in code generation models, and even more broadly in almost every transformer-based
language model. Even in emerging models with larger context windows, the relevant context for
an arbitrary type may be spread over long sequences within a program. This problem becomes
more apparent in larger context models that trade adequate attention for performance [65, 69].

Why can’t a language model solve this? There are two problems speci�c to language models that
wemust address. First, a languagemodel can only accept a limited number of tokens as input. Tokens
are the basic units of input and output for a language model, and may not necessarily correspond
to lexical tokens of a program. This token limit is called the context window, and programs can be
arbitrarily large and therefore cannot �t within a context window. Second, �ll-in-the-middle can
generate unwanted code. For example, Figure 2a shows a single-parameter function that is given to
a model; however, the model produces the result in Figure 2b, where x is correctly annotated as
number, but an additional parameter y is generated.
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4.1 Approach

Our work has four contributions: a new evaluation methodology that measures program typedness,
the degree to which migrated programs contain type information;OpenTau, an implementation that
takes a tree-based program decomposition approach to �t large programs within context windows; a
�ll-in-the-type �ne-tuning approach based on �ll-in-the-middle; and an evaluation on a new dataset
of TypeScript �les.

Table 3. Score for each type en-
countered. A type that is not in
the table is scored as 0.

Type annotation Score

unknown 1.0
any (or missing) 0.5
Function 0.5
undefined 0.2
null 0.2

4.1.1 Program Typedness. In previous work, I proposed type check-
ing the program instead of using accuracy as a metric [79]. How-
ever, one of the lessons of that work is that trivial type annotations
(e.g., any) will always type check, but provide little bene�t to the
programmer.

We would like a metric that captures type information but is also
amenable to type checking and does not require ground truth data.
As a �rst step, we propose a typedness metric that measures the
degree to which a program contains type information. Intuitively,
this rewards type annotations that are informative but restrictive,
which allow the type checker to catch more errors.

To compute the typedness score of a program, we count the number of undesirable type annota-
tions, assign a score to each annotation as speci�ed in Table 3, sum the scores, and normalize the
score by the number of types encountered. The score is normalized to a number between 0 and
1000, where lower scores are preferred. The typedness metric counts only leaf types in an abstract
syntax tree, e.g., Array<any> is scored as 0.5, since any is the type argument.

4.1.2 Tree-Based Program Decomposition. Programs are hierarchical in structure: the top-level
code block contains declarations and each declaration creates a code block that may contain
nested declarations, e.g., functions may contain nested functions and classes may contain methods.
OpenTau reuses this structure for type prediction by representing the program as a tree, with the
top level as the root node, declarations as non-root nodes, nested declarations as child nodes, and
top-level variable declarations grouped into a single node under the root. OpenTau also ensures
that comments appearing directly before a declaration are included in that declaration’s node, as
comments may contain additional context.

The tree representation also allows long-range context to be included in a node. For instance, if a
node represents a function de�nition, OpenTau scans the parent node’s code block for statements
that use that function. Then, it generates a comment containing usage information and prepends
it to the node’s declaration. Thus, the prompt to the model contains the full text of the node’s
function de�nition, as well as a comment containing usages of that function.
The tree representation also encodes dependencies between nodes: nested declarations must

be fully typed before their enclosing declarations, so child nodes are visited before their parents.
Additionally, a fully annotated child node provides context when predicting types for the parent
node. This induces a bottom-up, level-order traversal that starts from the deepest level of the
tree and �nishes at the root. Then, at each node, OpenTau uses a large language model with
�ll-in-the-middle to predict type annotations.

At the end of the tree traversal, OpenTau may have generated multiple typings for the program.
Each typing is type checked by the TypeScript compiler, and the number of type errors is logged.
If there are no type errors, then the solution type checks. OpenTau additionally computes the
typedness score for each typing. Finally, the typings are sorted by the number of type errors, with
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ties broken by the typedness score. The best solution has the fewest type errors—ideally zero—but
the most type information.

4.1.3 Fill-in-the-Type. We adapt the �ll-in-the-middle training technique [7, 26] to �ne-tune �ll-
in-the-type for TypeScript type prediction. We use SantaCoder as the base model, an open-source
model with 1.1 billion parameters that was pre-trained on Python, JavaScript, and Java for left-to-
right and �ll-in-the-middle code generation [8]. We �ne-tune SantaCoder using the TypeScript
subset of the near-deduplicated version of The Stack, a dataset of permissively licensed source
code [42].
The original �ll-in-the-middle technique splits an input into pre�x, middle, and su�x spans;

however, our approach splits on type annotation location indices rather than arbitrary code se-
quences, and selects a type annotation as the middle span rather than a multi-line span of code.
Furthermore, to closely resemble the context format that the model sees at inference time, we
ensure type annotations are present in the pre�x, but absent from the su�x 90% of the time, i.e.,
we allow type annotations to be present in the su�x 10% of the time to handle inputs that may be
partially type annotated.

As a result, �ll-in-the-type addresses a limitation we observed when using InCoder’s �ll-in-the-
middle for type prediction [79].

Table 4. Factors and their weights, used to
compute a quality score for filtering the
evaluation dataset.

Factor Weight

Function annotations 0.25
Variable annotations 0.25
Type de�nitions 0.11
Dynamic features 0.01
Trivial type annotations 0.11
Prede�ned type annotations 0.05
Lines of code per function 0.11
Function usages 0.11

4.1.4 Dataset. As part of the evaluation, I created a new
dataset for evaluating type migration of TypeScript �les.
This new dataset satis�es certain properties: for instance,
dataset �les should not be trivially incorrect (e.g., syntac-
tically invalid or requiring external modules) or trivial to
migrate (e.g., �les that are too short or have no type anno-
tation locations). Focusing on �les rather than packages (as
I did for the TypeWeaver dataset [79]) makes it easier to
use the dataset and avoids requiring an entire package to
type check. Focusing on TypeScript rather than JavaScript
avoids code that cannot be migrated without refactoring,
but has the disadvantage of not re�ecting the actual prac-
tice of migrating JavaScript to TypeScript. These choices
address limitations I observed in prior work [79].
I constructed a dataset of 744 TypeScript �les by �ltering the near-deduplicated version of The

Stack [42], which contains roughly 12.8 million TypeScript �les. Filtering removes �les that depend
on external modules, do not type check, have no type annotation locations, have fewer than 50 lines
of code, have no functions, or average fewer than �ve lines of code per function. These �ltering
steps reduce the dataset to 21,464 �les.

Next, I computed a weighted quality score for each �le, preferring �les with (1) more function and
parameter annotation sites, (2) more variable annotation sites, (3) more type de�nitions, (4) fewer
instances of dynamic features (e.g., eval), (5) fewer trivial type annotations (e.g., any), (6) fewer
prede�ned type annotations (e.g., string), (7) more lines of code per function, and (8) more function
usages. The weights are shown in Table 4. After computing scores, I removed �les that were one or
more standard deviations below the mean score, leaving 17,254 �les in the dataset.
Next, to minimize test-train overlap, I apply a December 31, 2021 cuto�, consistent with the

training cuto� used for �ne-tuning. This results in 867 �les after the cuto�. Finally, I process the
�ltered, high-quality TypeScript dataset to remove type annotations. This procedure does not
always succeed, so I discard �les where it fails, resulting in the �nal evaluation dataset of 744 �les.
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Table 5. Experimental results of evaluating OpenTau. We measure files that type check, which is more rigorous
than measuring individually correct type annotations.
All numbers are rounded to the nearest tenth.
TS = TypeScript; FIT = fill-in-the-type; ✓ denotes the number of files that type check.

Type checks Errors

Model Con�guration ✓ Total % Typedness Type Syntax

TS baseline, no parser 1 50 2.0 0.0 121.2 42.1
FIT baseline, no parser 25 50 50.0 230.0 4.6 0.2

TS baseline 245 744 32.9 200.7 4.7 0.0
FIT baseline 297 744 39.9 200.9 5.2 0.0
FIT OpenTau 353 744 47.4 154.6 3.3 0.0

4.2 Results

We evaluate OpenTau to determine the e�ectiveness of �ll-in-the-type and its tree-based program
decomposition, using four metrics: the percent of �les that type check, the typedness score for �les
that type check, the average number of type errors, and the average number of syntax errors.

We compare two SantaCoder models: one that has been �ne-tuned for TypeScript code generation
(SantaCoder-TS), and one that has been �ne-tuned for �ll-in-the-type for TypeScript (SantaCoder-
FIT). We compare OpenTau’s program decomposition with a baseline that treats the entire �le as a
single tree node. We use a type parser to extract the �rst plausible type annotation returned by
SantaCoder.
Table 5 shows our results. OpenTau signi�cantly outperforms the baseline: 47.4% of �les type

check (14.5% absolute improvement) with amuch lower typedness score.We discuss our experiments
below.

Type parser. We conduct a small experiment that compares SantaCoder-TS and SantaCoder-FIT
with the type parser disabled, on a random sample of 50 �les from the dataset. Our results show
that �ll-in-the-type signi�cantly helps with predicting syntactically valid type annotations, and is
e�ective without the type parser: 50% of �les type check with an average rate of 0.2 syntax errors
per �le, compared to 2% of �les that type check and 42.1 syntax errors per �le.

Fill-in-the-type. We repeat the experiment on the full dataset with the type parser enabled. Santa-
Coder-FIT outperforms SantaCoder-TS in the percentage of �les that type check (32.9% vs. 39.9%),
while maintaining a similar average typedness score.

Tree-based program decomposition. Finally, we compare OpenTau’s program decomposition to
the baseline, and show that it outperforms the baseline in all metrics. In particular, the typedness
score is much lower, suggesting that OpenTau is successful in searching for more precise type
annotations.

4.3 Takeaways

Our work in Cassano et al. [15] builds on Yee and Guha [79] in several respects:

• We introduced a program typedness metric that measures the degree to which a program
contains type information. This metric can be used alongside a type checking metric while
quantifying the type information available, i.e., trivial type annotations like any are penalized.
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7 function dist(p1, p2) {

8 const dx = p2.x - p1.x;

9 const dy = p2.y - p1.y;

10 return Math.sqrt(dx*dx + dy*dy);

11 }

(a) JavaScript

12 function dist(p1: Point , p2: Point ) {

13 const dx = p2.x - p1.x;

14 const dy = p2.y - p1.y;

15 return Math.sqrt(dx*dx + dy*dy);

16 }

(b) TypeScript

Fig. 3. A function that computes the distance between two points.

• We designed a new �ll-in-the-type training technique that adapts �ll-in-the-middle for
TypeScript type prediction. This signi�cantly improves the ability of a large language model
to �ll in a syntactically valid type annotation, rather than a multi-line span of code.

• I created an improved dataset that excludes �les that are trivially incorrect or depend on
external modules, and prioritizes �les that are not trivial to migrate. Furthermore, the dataset
is based on individual �les rather than packages, which makes the dataset more convenient to
use and avoids the burden of requiring the entire package to type check. Finally, in choosing
to use TypeScript instead of JavaScript, I avoid dataset �les that cannot be migrated without
refactoring; however, the trade-o� is that this no longer re�ects the use case of migrating
JavaScript to TypeScript.

In particular, our �ll-in-the-type technique demonstrates that SantaCoder can signi�cantly im-
prove at type prediction if it is �ne-tuned properly. Additionally, OpenTau shows that constructing
an appropriate prompt format also helps improve type prediction performance. Together, this
suggests that specialized �ne-tuning and prompting for a speci�c task, e.g., type prediction, can
improve performance.

4.4 Publication Status

This work was submitted to NeurIPS 2023, the Conference on Neural Information Processing
Systems [15], and a �nal decision is expected in late September 2023.

5 PROPOSED WORK: GENERATING TYPE DEFINITIONS

My previous work on type migration has only focused on type prediction. Now, I would like to
return to one of the other type migration problems, which is generating type de�nitions. To my
knowledge, this problem has not been studied before, and prior work has only examined predicting
library or user-de�ned types.

5.1 Problem Definition

Consider Figure 3, which shows a function that computes the distance between two points. A
type prediction system may take the unannotated JavaScript version of Figure 3a as input and
return the TypeScript version of Figure 3b, where the inserted type annotations for Point are
highlighted. However, the resulting program fails to type check, because Point is not de�ned.

The task is to generate the de�nition for Point and insert it into the program so that the program
type checks. This assumes that type annotations have already been inserted into the program.

5.2 Assumptions

For training and evaluation, I plan to use self-contained, single-�le TypeScript programs; these
are the datasets [77, 78] I created for Cassano et al. [15]. This approach avoids the problem of
handling inter-�le dependencies or inter-project dependencies. However, it also assumes that �les
in the dataset de�ne and use types; otherwise, there is no need to generate type de�nitions. If the



Predicting TypeScript Type Annotations and Definitions With Machine Learning 11

17 <commit_before> function dist(p1, p2) {

18 const dx = p2.x - p1.x;

19 const dy = p2.y - p1.y;

20 return Math.sqrt(dx*dx + dy*dy);

21 }

22 <commit_msg> add TypeScript annotations to function

23 <commit_after>

(a) Input code and edit instruction, forma�ed as a Git commit for StarCoder.

24 function dist(p1: Point , p2: Point): number {

25 const dx = p2.x - p1.x;

26 const dy = p2.y - p1.y;

27 return Math.sqrt(dx*dx + dy*dy);

28 }

(b) Output code, with type annotations added.

Fig. 4. Adding type annotations by providing an edit instruction to StarCoder. Special tokens are highlighted.

assumption does not hold, then I will need a dataset of projects, rather than individual �les. For
example, I could use the JavaScript dataset from Yee and Guha [79], or an unused JavaScript dataset
I had prepared for Cassano et al. [15].
Another assumption is that a TypeScript dataset is appropriate for evaluation. This approach

avoids evaluating on �les that cannot be migrated without refactoring, but does not re�ect the use
case of migrating from JavaScript to TypeScript.

5.3 Approach

I propose �ne-tuning a large language model to generate type de�nitions, speci�cally, one of
the StarCoder models [44]. This approach draws from the lessons of Cassano et al. [15], where we
�ne-tuned a large language model for type prediction and determined an e�ective way of using
that model during inference.
The StarCoder family of models builds on the work of SantaCoder: StarCoderBase was trained

on 86 programming languages from The Stack, including JavaScript and TypeScript, and has 15.5
billion parameters. This model is large, requiring around 60 GB to store and a data centre GPU
to run. There are also smaller versions of StarCoderBase, such as StarCoderBase-1B, which has 1
billion parameters and requires 5 GB to store and a consumer GPU to run.

The training data and format for StarCoder included Git commits, allowing the model to learn to
edit code based on natural language prompts. Figure 4 shows an example of adding type annotations
to a function by providing a natural language prompt to the model: StarCoder was trained on the
format in Figure 4a, so it learns to associate a commit message with the code before and after the
commit.
I do not believe it is feasible to train a new model from scratch, or to �ne-tune StarCoder on

a new format. Therefore, I believe the best approach is to re-use the Git commit format and try
di�erent edit instructions and code examples, e.g. untyped to fully typed, partially typed to more
typed, typed but missing de�nitions to fully typed with de�nitions, etc.

5.3.1 Alternative Approaches.

Database of types. This approach does not involve machine learning. The idea is to process source
code that was used for training and create a database of type de�nitions. Thus, if a type-annotated
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program refers to an unde�ned type T, then the database is queried for T’s de�nition, which is then
inserted into the program. However, there may be multiple de�nitions for T, so the challenge is to
determine the right one.

This approach assumes that an untyped program is �rst migrated to a typed program that may
be missing type de�nitions. One way to identify missing type annotations is to parse the error
messages for unresolved type names, transform the unresolved names to any, and then type check.
If the program type checks, then the type errors are due to missing type de�nitions and not some
other issue.

Type de�nitions �rst. In contrast to all other approaches discussed, this approach �ips the order
by generating type de�nitions �rst, and then adding type annotations to the program. This re�ects
how a programmer writes in a statically typed programming language: de�ning types before
use. The idea would be to use some kind of constraint-based type inference (e.g., the TypeScript
compiler) to generate a possibly verbose structural type de�nition, and then use machine learning
to generate a name for that type.
However, this approach seems impractical, due to two challenges. First, it is not clear how to

evaluate the quality of a type name: there may be no ground truth for comparison, the name does
not matter when type checking, and name quality is ultimately a subjective measure. Second, the
process of generating type de�nitions may be brittle: the TypeScript type system is complex, and a
conservative type inference scheme may produce imprecise and unhelpful types, e.g., any. As a
result of these challenges, I will be prioritizing the other approaches previously discussed.

5.4 Plan

5.4.1 Preliminary Work.

1. I implemented a test harness to evaluate the task of generating type de�nitions. As a baseline,
the harness uses StarCoderBase-1B, the smaller, 1 billion parameter version of StarCoderBase.

2. I ran the baseline experiments on my TypeScript test dataset [77], with type annotations
and de�nitions removed. After some experimentation, I decided to use the edit instruction
“Add type annotations and interfaces.”

3. As an initial evaluation metric, I used accuracy and measured an accuracy of 15% on the
baseline experiment. Although accuracy has its limitations, it does not make sense to invoke
the type checker during the training loop. I plan to use type checking as a metric in the full
evaluation.

4. I prepared, on-the-�y, a training dataset based on Yee [78], that removes all type de�nitions
and annotations, using the StarCoder Git commit format, with the edit instruction “Add
type annotations and interfaces.” This format trains the model to go from an untyped
program to a fully typed program with type de�nitions.

5. I �ne-tuned StarCoderBase-1B on the training dataset, for 24 hours on two NVIDIA H100
GPUs.

5.4.2 Planned Work.

6. Evaluate the �ne-tuned model on accuracy.
7. Try di�erent �ne-tuning formats, e.g., partially typed to more typed, typed but missing

de�nitions to fully typed with de�nitions, interactive chat-like format, �ll-in-the-middle for
type de�nitions, etc.

8. Perform a more rigorous evaluation, e.g. using the TypeScript type checker instead of
accuracy, using projects instead of �les, and using JavaScript instead of TypeScript. This step
may involve preparing a new or adapted dataset.
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Table 6. Schedule

Sep Oct Nov Dec

Type de�nitions X
Paper X X
Dissertation X X X
Defence X

6 PROPOSED SCHEDULE

I am currently working on the type de�nitions problem and plan to �nish soon. After my proposal
defence, I expect to start writing the paper and my dissertation. Depending on completion status
and �t, I see several potential venues for submitting the paper: ETAPS (expected October deadline)
PLDI (expected November deadline), ECOOP (expected December deadline), and ICML (expected
January deadline). Table 6 summarizes my proposed timeline.
Concurrently, I expect a decision for the NeurIPS paper [15] in late September. If the paper is

accepted, we will need to work on �nal revisions and a talk for the conference in December. If the
paper is not accepted, then I expect we will resubmit to ICLR or PLDI.

7 RELATED WORK

Constraint-based type inference. There are many constraint-based approaches to type migration
for the gradually typed lambda calculus (GTLC) and some modest extensions. The earliest approach
was a variation of uni�cation-based type inference [67], and more recent work uses a wide range
of techniques [12, 17, 29, 48, 51, 59]. Since these approaches are based on programming language
semantics, they produce sound results, which is their key advantage over learning-based approaches.
However, these would require signi�cant work to scale to complex programming languages such
as JavaScript.

Constraint-based type inference for larger languages. There are also several constraint-based
approaches to type inference for larger languages. Anderson et al. [3] presents type inference for a
small fragment of JavaScript, but is not designed for gradual typing. Rastogi et al. [61] infer gradual
types for ActionScript to improve performance. More recently, Chandra et al. [18] infer types for
JavaScript programs with the goal of compiling them to run e�ciently on low-powered devices;
their approach is not gradual by design and deliberately rejects certain programs. DRuby [28] infers
types for Ruby and treats type annotations in a novel way: inference assumes that annotations are
correct, and defers checking them to runtime.

There are also several other gradual type systems for JavaScript [22, 31, 43, 73]. These languages
do not have support for type inference and do not provide tools for type migration. Instead, like
Typed Racket [70], they require programmers to manually migrate their code to add types. However,
there are tools that use dynamic pro�les to infer types for these type systems [2, 27, 64].
Even when constraint-based type inference succeeds in a gradually typed language, it can fail

to produce the kinds of types that programmers write, e.g., named types, instead of the most
general structural type for every annotation. Soft Scheme [13] infers types for Scheme programs,
but Flanagan [25, p. 41] reports that it produces unintuitive types. For Ruby, InferDL [41] uses
hand-coded heuristics to infer more natural types, and SimTyper [40] uses machine learning to
predict equalities between structural types and more natural types; however, the type names refer
to existing type de�nitions seen during training or present in user code, and SimTyper does not
generate type de�nitions.
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Deep type prediction and code generation. Several earlier works have proposed using deep learning
to predict types for JavaScript and TypeScript. DeepTyper [32] and NL2Type [46] use recurrent
neural networks, LambdaNet [74] uses a graph neural network, and TypeBert [39] and Diverse-
Typer [37] use BERT-style architectures.

There have also been works to predict types for Python [1, 23, 50, 57, 58, 76]; in particular,
TypeWriter [60] uses a type checker to search the space of type predictions. A distinction between
Python type systems and TypeScript is that Python code is predominantly nominally typed: the
type of a variable is either a builtin type or a class, whereas TypeScript uses structural types.
Recently, decoder-only transformer neural networks have been widely used for general code

generation, which in extension are capable of type prediction. Notable among these works are
Codex [20], InCoder [26], SantaCoder [8], and StarCoder [44]. For code generation tasks that require
edit-style generation, �ll-in-the-middle training and inference strategies have been proposed [7, 8,
26, 34].

Evaluation datasets. ManyTypes4TypeScript [38] is a comprehensive dataset of TypeScript type
annotations for training and evaluation, including evaluation scripts; however, the metrics are
based on accuracy of individual type annotations. There are also datasets for Python deep learning
type inference [1, 49].
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A APPENDIX

This appendix was added after the thesis proposal defence.

A.1 Thesis Commi�ee

My thesis committee consists of:

• Arjun Guha (advisor)
• Steven Holtzen
• Frank Tip
• Michael Greenberg (external)

Steven Holtzen works on machine learning and programming languages, and was a collaborator
on one of the papers in my thesis proposal. Frank Tip works on software engineering, program
analysis, and JavaScript. Michael Greenberg works on scaling programming language techniques
to real systems, and has also worked on gradual typing.

A.2 Thesis Commi�ee Feedback

After the thesis proposal defence, my thesis committee provided feedback and require the following
before my thesis defence:

1. Resubmit the OpenTau paper [15] if needed.
2. Add related work, speci�cally Fisher et al. [24], Hoe�ich et al. [33], Pradel et al. [60].
3. Present the alternative approaches as “Future Work.”
4. Present the most naïve baseline, which is using tsc itself to migrate JavaScript code.
5. Evaluate type migration approaches on 5–10 larger projects that span multiple �les. Join all

the �les into one �le when needed, and feel free to do so by hand.
6. Complete the type declaration inference project as outlined. (This work does not need to be

submitted as a paper.)
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