Dominators in Graphs

Ming-Ho Yee

Definitions

d dominates n d domn, d € Dom(n)
* If every path from s, (start node) to n contains d.
* Every node dominates itself

d strictly dominates n
* Ifd dominatesnandd # n

d immediately dominates n d = idom(n)
* If d strictly dominates n and every other dominator of n dominates d

Dominator tree
e Every child is immediately dominated by its parent
* Root node is the start node
* Ancestor a of noden 2 a domn

/—I-\E/;q _\\,I
& i Q/ \‘

{ o 0 !
[(1) ©
VY, i
19 >(12) (19

(a) (b)
FIGURE 18.3. (@) A flow graph; (b) its dominator tree.

[Appel and Palsberg, 2004]

Applications

e Static Single Assignment
 Compute the dominance frontier first
* Use the frontier to insert phi nodes

* Finding loops
* Hoisting instructions

* And many other optimizations...

Anecdotal Performance in R

Before After
Total Average Total Average
Benchmark (5 iterations) 89,205 ms 17,841 ms 82,425 ms 16,485 ms
Constructing the dominator tree 4,988 ms 80 us 90 ms 1.5 us
a dom? b 42 ms 46.1 ns 169 ms 182 ns

a idom? b 186 ms 24 ns 153 ms 19 ns

History

e 1959: Definition of dominance [prosser 1959]

* 1969: First sketch of algorithm [Lowry and Medlock, 1969]
* Complexity is at least quadratic

e 1970: Data-flow equations [Allen, 1970]

e 1972: Iterative data-flow algorithm [Allen and Cocke, 1972]
... more quadratic algorithms ...

* 1979: Almost linear complexity [Lengauer and Tarjan, 1979]

... more almost linear algorithms ...

Data-flow Equations

Let Dom(n) be the set of nodes that dominate n. Then:

Dom(sg) = {so}

Dom<n>={n}u< f Dom(p))

pEpreds(n)

Iterate until you reach a fixed point.
O (n?) time complexity, and very slow in practice

Another Algorithm [Aho and Ullman, 1972]

For each node v # sj:
 Remove v from the graph

e Consider the set of nodes S that are now unreachable
* Then Dom(v) =S

0 (n?) time complexity

lterative Algorithm, revisited

e Set intersection is the bottleneck

* |dea: use a consistent ordering for sets

* Perform intersection by walking through both sets in order, with
pairwise comparisons
* Order encodes a path through the dominator tree

* Very simple implementation [Cooper, Harvey, and Kennedy, 2006]

* But slower in practice than the Lengauer-Tarjan algorithm
[Georgiadis, Tarjan, and Werneck, 2006]

Lengauer-Tarjan Algorithm

* Simple version: O(m logn)

* Sophisticated version: O(m a(m, n))
* Where a(m, n) is the inverse of the Ackerman function

The simple Lengauer-Tarjan algorithm is faster in practice,
and less sensitive to pathological graphs.

This explanation is adapted from Appel and Palsberg [2004].

Depth-First Spanning Tree

* Use DFS to compute a spanning tree
* Assign a dfnum to each node

a is an ancestor of b
* If a = b or there is a path from a to b in the spanning tree

* j.e. dfnum(a) < dfnum(b)

a is a proper ancestor of b
* |faisanancestorof banda # b
* j.e. dfnum(a) < dfnum(b)

Note: Can test ancestor relation by comparing dfnums

A
v _/ \
B _[*C / “Ba /*Ci
|I # rJ \1. Il | \\II
|I 5\|_]?\' : Ds '\ _En |
A A A A
F G H - R G0 oHis
| A ! | N
I* J i I_,.f ~Jw |
| K N Ks !
\\EL; \H'“'—\—L:‘r I
M My

(b) Depth-first

(a) Graph
spanning tree
FIGURE 19.8. A control-flow graph and trees derived from it. The numeric
labels in part (b) are the dfnums of the nodes.

[Appel and Palsberg, 2004]

Dominators and dfnums

 If idom(n) = d, then d must be an ancestor of n
* j.e., dfnum(d) < dfnum(n)

* Therefore: ancestors of n are idom candidates!

 |If an ancestor x does not dominate n, there must
be some “detour” starting above x.
* Nodes on the detour are not ancestors of n
e j.e. their dfnums must be greater than n’s

Semidominators

s semidominates n s = semi(n)
* If s is the highest ancestor with a path to n, using
non-ancestor nodes
* Highest ancestor = smallest dfnum

* dfnum(s) < dfnum(n)
* Pathp = s,u4, ..., ug, n using non-ancestor nodes

* dfnum(u;) > dfnum(n)

semi(n) is a candidate for idom(n)
* Often, semi(n) = idom(n)
* An exception: semi(n) itself is bypassed

=

/

X

{
)

- =
(.
L]

~

—

\

Semidominator Theorem

Consider all predecessors v of n in the CFG. Then:

* If visaproperancestorofn dfnum(v) < dfnum(n)
* vis acandidate for semi(n)

* If vis a non-ancestor of n dfnum(v) > dfnum(n)

* For each u that is an ancestor of v, (and not an ancestor of n)
semi(u) is a candidate for semi(n)

semi(n) is the candidate with the lowest dfnum

=

.
—

' — T —

/
/

\

e

X

—

—
-\\._‘-""-

) AN A\
/ B lr*(f /B ;’*TU /1?\ M C
|III 5\|];3\' 'r DJN‘.ILK Ei2 \:| DGI E H
VA A /N T \
; G; | F Gf His F]
| I* J [lf N o | I~|(\L
| ke |
\\EL; 1\‘.”___]_‘:: |I
"“'-:LM -
(c) Semidominator

(b) Depth-first

(a) Graph
spanning tree tree
FIGURE 19.8. A control-flow graph and trees derived from it. The numeric
labels in part (b) are the dfnums of the nodes.

[Appel and Palsberg, 2004]

Dominator Theorem

Consider the spanning tree path from s = semi(n) to n.

Let y be the node with smallest numbered
semidominator, i.e. minimum dfnum(semi(y)).

Then:
semi(n) if semi(y) = semi(n)

idom(n) = {idom(y) if semi(y) # semi(n)

=

.
—

' — T —

X

/
/

,,—F"I"":

-\\._‘-""-

\

A Al A
AN /N I\ /N
N RO NS AN
|'f E)\\.E\ ! D;*.,l‘\,Eu \:. DGI EH DGILEH
AR VARSI \ |\
| G& i Fu Gf His F] F]
| I* J ! I’Ii AN I I."r Il'_ \L I'|(
N N\
_L; \H'“'——L:‘r i
™M 7
(a) Graph (b) Depth-first (c) Semidominator (d) Dominator
spanning tree tree tree
A control-flow graph and trees derived from it. The numeric

FIGURE 19.8.

labels in part (b) are the dfnums of the nodes.

[Appel and Palsberg, 2004]

Lengauer-Tarjan Algorithm

1. Perform DFS to number nodes and create the depth-first
spanning tree

2. For each node n (in decreasing dfnum order):
* Use the Semidominator Theorem to compute semi(n)
* Insert n into the spanning forest

3. Implicitly define the idom by applying the first clause of
the Dominator Theorem

4. For each node n (in increasing dfnum order):

* Explicitly define the idom by applying the second clause of the
Dominator Theorem

Spanning Forest

* Build a spanning forest as the CFG is traversed

 When n is processed, only non-ancestors of n are in the
forest

link(p, n)
* Add the edge (n, p) to the spanning forest
* ancestorWithLowestSemi(v)
e Search upwards in the forest, starting from v

* Find the ancestor of v whose semidominator has the
lowest dfnum

FIGURE 19.11.

as as
A A
rijg i-’ii
A A
'fil aj ﬂl1
A A A
| L] (fl\ L |\ L]
. » .
A \. \ | \. \
. .l. T‘\‘- . I| TY\‘- - II|
\v v/ vﬁl
N X X
W w :
(b) (c)
Path compression. (a) Ancestor links in a spanning

tree; AncestorWithLowestSemi(v) traverses three links. (b)
New nodes a;, a3 are linked into the tree. Now
AncestorWithLowestSemi(w) would traverse 6 links. (c)
AncestorWithLowestSemi(v) with path compression redirects
ancestor links, but best[v] remembers the best intervening node
on the compressed path between v and a;. (d) Now, after a;
and a3 are linked, AncestorWithLowestSemi(w) traverses only

4 links.

[Appel and Palsberg, 2004]

Dominators() =
N <« 0; Vn. bucket[n] < {}
Vn. dfnum[n] < 0, semi[n] < ancestor[n] < idom[n] < samedom[n] < none
DFSinone. r)
fori < N — 1 downto 1
n < vertex[i]l; p < parent[n]; s < p
for each predecessor v of n
if dfnum[v] < dfnum[n]

DFS(node p, node n) =
if dfnum[n] =0
dfnum([n] < N; vertex[N] < n; parent[n] < p

p N« N+1
v for each successor w of n
else 5’ < semi| AncestorWithLowestSemi(v)] DES(n. w)
if dfnum|s’'] < dfnum|s]
§ — 5§
semi[n] < s AncestorWithLowestSemi(node v) =
bucket[s] < bucket[s] U {n} a < ancestor|[v]
Link(p, n) if ancestor|a] # none
for each v in bucket| p] b < AncestorWithLowestSemi(a)
y < AncestorWithLowestSemi(v) ancestor[v] < ancestor|a]
if semi[y] = semilv] if dfnum|[semilb]] <
idom[v] < p dfnum|[semilbest[v]]]
else samedom|[v] <— y bestlv] < b
bucket[p] < {} return best|v]

fori < lto N —1
n < vertex|i|
if samedom|n] # none

idom[n] < idom[samedom|n]] [Appel and Palsberg, 2004]

Link(node p, node n) =
ancestor[n] <— p; best[n] < n

Implementation in R

Straightforward translation from pseudocode to C++
* About 100 LOC, without comments

https://github.com/reactorlabs/rir/blob/b265f9e/rir/src/com
piler/util/cfg.cop#L52

https://github.com/reactorlabs/rir/blob/b265f9e/rir/src/compiler/util/cfg.cpp#L52
https://github.com/reactorlabs/rir/blob/b265f9e/rir/src/compiler/util/cfg.cpp#L52

	Slide 1: Dominators in Graphs
	Slide 2: Definitions
	Slide 3
	Slide 4: Applications
	Slide 5: Anecdotal Performance in Ř
	Slide 6: History
	Slide 7: Data-flow Equations
	Slide 8: Another Algorithm [Aho and Ullman, 1972]
	Slide 9: Iterative Algorithm, revisited
	Slide 10: Lengauer-Tarjan Algorithm
	Slide 11: Depth-First Spanning Tree
	Slide 12
	Slide 13: Dominators and dfnums
	Slide 14: Semidominators
	Slide 15: Semidominator Theorem
	Slide 16
	Slide 17: Dominator Theorem
	Slide 18
	Slide 19: Lengauer-Tarjan Algorithm
	Slide 20: Spanning Forest
	Slide 21
	Slide 22
	Slide 23: Implementation in Ř

