
Dominators in Graphs
Ming-Ho Yee

May 8, 2020



Definitions

𝑑 dominates 𝑛 𝑑 dom 𝑛, 𝑑 ∈ Dom(𝑛)
• If every path from 𝑠0 (start node) to 𝑛 contains 𝑑.

• Every node dominates itself𝑑 strictly dominates 𝑛
• If 𝑑 dominates 𝑛 and 𝑑 ≠ 𝑛𝑑 immediately dominates 𝑛 𝑑 = idom(𝑛)
• If 𝑑 strictly dominates 𝑛 and every other dominator of 𝑛 dominates 𝑑

Dominator tree
• Every child is immediately dominated by its parent

• Root node is the start node

• Ancestor 𝑎 of node 𝑛→ 𝑎 dom 𝑛



[Appel and Palsberg, 2004]



Applications

• Static Single Assignment

• Compute the dominance frontier first

• Use the frontier to insert phi nodes

• Finding loops

• Hoisting instructions

• And many other optimizations…



Anecdotal Performance in Ř

Before After

Total Average Total Average

Benchmark (5 iterations) 89,205 ms 17,841 ms 82,425 ms 16,485 ms

Constructing the dominator tree 4,988 ms 80 μs 90 ms 1.5 μs𝑎 dom? 𝑏 42 ms 46.1 ns 169 ms 182 ns𝑎 idom? 𝑏 186 ms 24 ns 153 ms 19 ns



History

• 1959: Definition of dominance [Prosser 1959]

• 1969: First sketch of algorithm [Lowry and Medlock, 1969]

• Complexity is at least quadratic

• 1970: Data-flow equations [Allen, 1970]

• 1972: Iterative data-flow algorithm [Allen and Cocke, 1972]

… more quadratic algorithms …
• 1979: Almost linear complexity [Lengauer and Tarjan, 1979]

… more almost linear algorithms …



Data-flow Equations

Let 𝐷𝑜𝑚(𝑛) be the set of nodes that dominate 𝑛. Then:Dom 𝑠0 = 𝑠0
Dom 𝑛 = 𝑛 ∪ ሩ𝑝∈preds(𝑛)Dom(𝑝)

Iterate until you reach a fixed point.𝑂 𝑛2 time complexity, and very slow in practice



Another Algorithm [Aho and Ullman, 1972]

For each node 𝑣 ≠ 𝑠0:

• Remove 𝑣 from the graph

• Consider the set of nodes 𝑆 that are now unreachable

• Then Dom(𝑣) = 𝑆𝑂 𝑛2 time complexity



Iterative Algorithm, revisited

• Set intersection is the bottleneck

• Idea: use a consistent ordering for sets

• Perform intersection by walking through both sets in order, with 
pairwise comparisons

• Order encodes a path through the dominator tree

• Very simple implementation [Cooper, Harvey, and Kennedy, 2006]

• But slower in practice than the Lengauer-Tarjan algorithm 
[Georgiadis, Tarjan, and Werneck, 2006]



Lengauer-Tarjan Algorithm

• Simple version: 𝑂(𝑚 log 𝑛)
• Sophisticated version: 𝑂 𝑚 𝛼 𝑚, 𝑛
• Where 𝛼(𝑚, 𝑛) is the inverse of the Ackerman function

The simple Lengauer-Tarjan algorithm is faster in practice, 
and less sensitive to pathological graphs.

This explanation is adapted from Appel and Palsberg [2004].



Depth-First Spanning Tree

• Use DFS to compute a spanning tree
• Assign a dfnum to each node𝑎 is an ancestor of 𝑏
• If 𝑎 = 𝑏 or there is a path from 𝑎 to 𝑏 in the spanning tree

• i.e. dfnum 𝑎 ≤ dfnum(𝑏)𝑎 is a proper ancestor of 𝑏
• If 𝑎 is an ancestor of 𝑏 and 𝑎 ≠ 𝑏
• i.e. dfnum 𝑎 < dfnum(𝑏)

Note: Can test ancestor relation by comparing dfnums



[Appel and Palsberg, 2004]



Dominators and dfnums

• If idom 𝑛 = 𝑑, then 𝑑 must be an ancestor of 𝑛
• i.e., dfnum(𝑑) < dfnum(𝑛)

• Therefore: ancestors of 𝑛 are idom candidates!

• If an ancestor 𝑥 does not dominate 𝑛, there must 
be some “detour” starting above 𝑥.

• Nodes on the detour are not ancestors of 𝑛
• i.e. their dfnums must be greater than 𝑛’s



Semidominators𝑠 semidominates 𝑛 𝑠 = semi(𝑛)
• If 𝑠 is the highest ancestor with a path to 𝑛, using 

non-ancestor nodes

• Highest ancestor → smallest dfnum

• dfnum(𝑠) < dfnum(𝑛)
• Path 𝑝 = 𝑠, 𝑢1, … , 𝑢𝑘 , 𝑛 using non-ancestor nodes

• dfnum 𝑢𝑖 > dfnum 𝑛semi(𝑛) is a candidate for idom(𝑛)
• Often, semi(𝑛) = idom(𝑛)
• An exception: semi(𝑛) itself is bypassed



Semidominator Theorem

Consider all predecessors 𝑣 of 𝑛 in the CFG. Then:

• If 𝑣 is a proper ancestor of 𝑛 dfnum(𝑣) < dfnum(𝑛)
• 𝑣 is a candidate for semi(𝑛)

• If 𝑣 is a non-ancestor of 𝑛 dfnum(𝑣) > dfnum(𝑛)
• For each 𝑢 that is an ancestor of 𝑣, (and not an ancestor of 𝑛)semi(𝑢) is a candidate for semi(𝑛)semi(𝑛) is the candidate with the lowest dfnum



[Appel and Palsberg, 2004]



Dominator Theorem

Consider the spanning tree path from 𝑠 = semi(𝑛) to 𝑛.

Let 𝑦 be the node with smallest numbered 
semidominator, i.e. minimum dfnum(semi(𝑦)).
Then:idom 𝑛 = ቊsemi 𝑛 if semi 𝑦 = semi(𝑛)idom 𝑦 if semi 𝑦 ≠ semi(𝑛)



[Appel and Palsberg, 2004]



Lengauer-Tarjan Algorithm

1. Perform DFS to number nodes and create the depth-first 
spanning tree

2. For each node 𝑛 (in decreasing dfnum order):

• Use the Semidominator Theorem to compute semi(𝑛)
• Insert 𝑛 into the spanning forest

3. Implicitly define the idom by applying the first clause of 
the Dominator Theorem

4. For each node 𝑛 (in increasing dfnum order):

• Explicitly define the idom by applying the second clause of the 
Dominator Theorem



Spanning Forest

• Build a spanning forest as the CFG is traversed

• When 𝑛 is processed, only non-ancestors of 𝑛 are in the 
forest

• link(p, n)
• Add the edge (𝑛, 𝑝) to the spanning forest

• ancestorWithLowestSemi(v)
• Search upwards in the forest, starting from 𝑣
• Find the ancestor of 𝑣 whose semidominator has the 

lowest dfnum



[Appel and Palsberg, 2004]



[Appel and Palsberg, 2004]



Implementation in Ř

Straightforward translation from pseudocode to C++

• About 100 LOC, without comments

https://github.com/reactorlabs/rir/blob/b265f9e/rir/src/com
piler/util/cfg.cpp#L52

https://github.com/reactorlabs/rir/blob/b265f9e/rir/src/compiler/util/cfg.cpp#L52
https://github.com/reactorlabs/rir/blob/b265f9e/rir/src/compiler/util/cfg.cpp#L52

	Slide 1: Dominators in Graphs
	Slide 2: Definitions
	Slide 3
	Slide 4: Applications
	Slide 5: Anecdotal Performance in Ř
	Slide 6: History
	Slide 7: Data-flow Equations
	Slide 8: Another Algorithm [Aho and Ullman, 1972]
	Slide 9: Iterative Algorithm, revisited
	Slide 10: Lengauer-Tarjan Algorithm
	Slide 11: Depth-First Spanning Tree
	Slide 12
	Slide 13: Dominators and dfnums
	Slide 14: Semidominators
	Slide 15: Semidominator Theorem
	Slide 16
	Slide 17: Dominator Theorem
	Slide 18
	Slide 19: Lengauer-Tarjan Algorithm
	Slide 20: Spanning Forest
	Slide 21
	Slide 22
	Slide 23: Implementation in Ř

