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• This talk will define dominators, briefly discuss some applications and the history, and then focus on 

algorithms for computing dominators

• The focus will be on the Lengauer-Tarjan algorithm, which I implemented for RIR
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Definitions

� dominates � � dom �,   � ∈ Dom(�)
• If every path from �
 (start node) to � contains �.

• Every node dominates itself

� strictly dominates �
• If � dominates � and � ≠ �

� immediately dominates � � = idom(�)
• If � strictly dominates � and every other dominator of � dominates �

Dominator tree
• Every child is immediately dominated by its parent

• Root node is the start node

• Ancestor � of node �  � dom �

• We’re talking about control-flow graphs for function

• So these are directed graphs, and every function has a start node

• A node n may have multiple dominators, but only one immediate dominator

• The dominator tree directly encodes immediate dominance

• But (non-immediate) dominance can be read from the tree
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[Appel and Palsberg, 2004]

• Let’s look at some examples

• Node 3: every path from the start (1) contains 1, 2, 3

• Node 7: many ways to get there, thanks to branches

• 4 -> 5 -> 7 or 4 -> 6 -> 7

• Also loops before 4, but those are optional

• So we see that 5 and 6 do not dominate 7, but 4 does

• And 4 is the immediate dominator
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Applications

• Static Single Assignment

• Compute the dominance frontier first

• Use the frontier to insert phi nodes

• Finding loops

• Hoisting instructions

• And many other optimizations…

• Probably the most important application is SSA

• This is an intermediate representation where each variable is assigned only once

• Use phi nodes to represent merges of values at control-flow merge points

• SSA itself has many applications for optimizations, because we know that every variable is defined 

before used, and written to only once

• Dominance frontier of a node is where that node’s dominance “ends”

• It is where there is a merge of control-flow and data-flow , i.e. where phi nodes need to be inserted

• We use dominance for many other optimizations in RIR

• Finding loops: node d dominates n, but there is an edge from n to d

• Hosting instructions: move instructions up to an earlier node
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Anecdotal Performance in Ř

AfterBefore

AverageTotalAverageTotal

16,485 ms82,425 ms17,841 ms89,205 msBenchmark (5 iterations)

1.5 μs90 ms80 μs4,988 msConstructing the dominator tree

182 ns169 ms46.1 ns42 ms� dom? �
19 ns153 ms24 ns186 ms� idom? �

• The data for this table is very rough, but it was enough to see problem areas and improvements

• This whole adventure started when I was looking at a benchmark that we were very slow on

• Ran a profiler, saw a lot of time spent constructing the dominator tree

• Even though we don’t count warmup in our benchmarks, this still seemed concerning

• But this table includes warmup

• There are 5 iterations of the benchmark, but each iteration compiles hundreds of functions

• Some functions are much larger than others, e.g. 200, 300, or even 700 nodes

• And dominators are computed multiple times

• Made the mistake of looking at total time, rather than average time

• I thought the implementation was inefficient, but everything I tried made it worse, it’s hard to 

speed up something that takes 80 us

• Can’t outsmart the STL

• Turns out we needed a better algorithm

• The old algorithm explicitly stored the dominance relation, but now we read it from the dominator tree
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History

• 1959: Definition of dominance [Prosser 1959]

• 1969: First sketch of algorithm [Lowry and Medlock, 1969]

• Complexity is at least quadratic

• 1970: Data-flow equations [Allen, 1970]

• 1972: Iterative data-flow algorithm [Allen and Cocke, 1972]

… more quadratic algorithms …

• 1979: Almost linear complexity [Lengauer and Tarjan, 1979]

… more almost linear algorithms …

• This is actually a very old problem in computer science

• The 1972 algorithm presumably resembles the ones we see in textbooks today, but I couldn’t find the 

paper

• There were many other quadratic algorithms, until 1979

• After that, there was a focus on almost linear algorithms

• But in practice, these were often too slow on “real” graphs, and only profitable on extremely large 

graphs
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Data-flow Equations

Let ���(�) be the set of nodes that dominate �. Then:

Dom �
 = �


Dom � = � ∪ � Dom(�)
�∈�����(�)

Iterate until you reach a fixed point.

 �! time complexity, and very slow in practice

• We can define dominators as a classic dataflow problem

• Computing sets of nodes, base case is that the start node dominates itself

• Forward analysis, intersect the dominators of your predecessors

• And every node dominates itself

• RIR used a variant of this

• It seemed that the merge (set intersection) was the most expensive part
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Another Algorithm [Aho and Ullman, 1972]

For each node " ≠ �
:

• Remove " from the graph

• Consider the set of nodes # that are now unreachable

• Then Dom(") = #

 �! time complexity

• Want to briefly show this completely different algorithm

• It works by removing nodes one at a time

• All nodes now unreachable must be dominated by the node that was removed!
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Iterative Algorithm, revisited

• Set intersection is the bottleneck

• Idea: use a consistent ordering for sets

• Perform intersection by walking through both sets in order, with 
pairwise comparisons

• Order encodes a path through the dominator tree

• Very simple implementation [Cooper, Harvey, and Kennedy, 2006]

• But slower in practice than the Lengauer-Tarjan algorithm 
[Georgiadis, Tarjan, and Werneck, 2006]

• In 2006, Cooper, Harvey, and Kennedy made the following observations

• Set intersection is the bottleneck

• But this could be sped up (and done with efficient space requirements) if the sets had a consistent 

ordering

• So intersection is just a walk through both sets in order, comparing elements

• Ordering is the path through the dominator tree

• Implementation is very simple

• Original paper claims it is faster than the LT algorithm

• But a later paper says that wasn’t the case, there were issues in Cooper, Harvey, and Kennedy’s 

implementation
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Lengauer-Tarjan Algorithm

• Simple version:  (� log �)
• Sophisticated version:  � & �, �

• Where &(�, �) is the inverse of the Ackerman function

The simple Lengauer-Tarjan algorithm is faster in practice, 
and less sensitive to pathological graphs.

This explanation is adapted from Appel and Palsberg [2004].

• A bit of handwaving here: m = #edges, n = #nodes

• Some presentations will use a value N = m + n

• In the worst case, we know that m = O(n^2) but it’s probably not that bad in practice

• The paper has a simple version that is O(m log n) and a sophisticated version whose complexity involves 

the inverse Ackerman function

• In the original paper, the sophisticated version was faster

• In a later paper, this was only true for extremely large graphs

• So it seems the simple version is “fast enough” in practice

• The rest of this talk is about the Lengauer-Tarjan algorithm

• The details are a bit involved

• And even the implementation is a bit tricky

• But transcribing the pseudocode was straightforward
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Depth-First Spanning Tree

• Use DFS to compute a spanning tree
• Assign a dfnum to each node

� is an ancestor of �
• If � = � or there is a path from � to � in the spanning tree

• i.e. dfnum � ≤ dfnum(�)
� is a proper ancestor of �

• If � is an ancestor of � and � ≠ �
• i.e. dfnum � < dfnum(�)

Note: Can test ancestor relation by comparing dfnums

• First, we need to look at depth-first spanning trees

• Traverse the CFG using DFS and number nodes, this constructs a spanning tree

• Nodes are numbered in order of encounter

• Edges in the CFG can be classified as “tree edges” or “non-tree edges”

• Note that these are not “if and only if”

• If you know a node is the ancestor or descendent of another node, can compare dfnums

• But dfnums are meaningless if two nodes are unrelated
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[Appel and Palsberg, 2004]

• Solid edges are tree edges, dashed edges are non-tree edges

• DFS means when we start at A, and see B and C, we visit all of B’s subtree before visiting C

• Let’s look at ancestors

• B is an ancestor of M, because B is 2 and M is 7

• C is not an ancestor of M

• There is a path in the original CFG, but not the depth-first tree

• May have encountered some terminology, but it’s not needed for dominators

• Forward edge: non-tree edge from a node to its descendent, e.g. C -> M

• Back edge: non-tree edge from a node to its ancestor, e.g. E -> C

• Cross edge: non-tree edge to a node with no ancestor relation, e.g. H -> M
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Dominators and dfnums

• If idom � � �, then � must be an ancestor of �
• i.e., dfnum
��  +  dfnum
��

• Therefore: ancestors of � are idom candidates!

• If an ancestor , does not dominate �, there must 
be some “detour” starting above ,.

• Nodes on the detour are not ancestors of �
• i.e. their dfnums must be greater than �’s

• Why is this important for dominators?

• Immediate dominator of n is an ancestor of n!

• This gives a very rough guess for idom candidates, but we can do better

• What about the cases where an ancestor x is not a dominator?

• There must be some detour that bypasses x

• Look at the node where the detour starts
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Semidominators

� semidominates � � � semi
��
• If � is the highest ancestor with a path to �, using 

non-ancestor nodes

• Highest ancestor  smallest dfnum

• dfnum
��  +  dfnum
��
• Path � �  �, /0, … , /2, � using non-ancestor nodes

• dfnum /3 4  dfnum �

semi
�� is a candidate for idom
��
• Often, semi
�� � idom
��
• An exception: semi
�� itself is bypassed

• Let’s formalize that idea

• For now, ignore the d -> x -> y path in the image

• We want to find s, the semidominator of n

• s is the highest ancestor of n, with a detour path to n using non-ancestor nodes

• s and n are ancestors of n, but the nodes in between cannot be ancestor nodes

• Note that such a path may simply be the edge from s to n; that counts

• Intuitively, what does this mean?

• There is a path from s to n using only tree edges

• There is a “detour” path that contains non-tree edges

• s is the highest ancestor of n with this property

• If there is a path from the start to s, there are two branches to n

• s is possibly the immediate dominator of n

• But an exception is if s itself is bypassed, e.g. d -> x -> y
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Semidominator Theorem

Consider all predecessors " of � in the CFG. Then:

• If " is a proper ancestor of � dfnum
"� + dfnum
��
• " is a candidate for semi
��

• If " is a non-ancestor of � dfnum
"�  4  dfnum
��
• For each / that is an ancestor of ", (and not an ancestor of �)semi
/� is a candidate for semi
��

semi
�� is the candidate with the lowest dfnum

• How do we compute semidominators? We use the Semidominator Theorem.

• We start by looking at the predecessors of n in the CFG

• If the pred is an ancestor, that’s a candidate for semidominator. Recall that preds can be 

semidominators, because the “bypassing path” can be empty

• If the pred is a non-ancestor, it’s more complicated

• Consider all the ancestors of the pred that aren’t ancestors of n, i.e. nodes on the 

“bypassing path”

• The semidominators of those nodes are candidates for semi(n)

• Note that a semidominator can be a predecessor or the “start of a bypassing path,” e.g. a 

non-tree path from u to v

• Take the one with the lowest dfnum, i.e. the highest node up the tree

• This may be clearer with examples
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[Appel and Palsberg, 2004]

• Let’s look at a few examples

• E has only one predecessor, C

• C is an ancestor of E, so it is a candidate for semi(E)

• It is the only one, so it is the semidominator

• H has two predecessors: E and C

• C and E are both ancestors, so they are both candidates

• But C has the lower dfnum, so it is the semidominator

• L has two predecessors: I and K

• I is an ancestor, so it is a candidate semidominator

• K is a non-ancestor, so look at all of K’s ancestors (including K) that are not ancestors of L

• This is only K

• Look at K’s semidominator, F, which is a candidate semidominator for L

• F has a smaller dfnum than I, so F is the semidominator

• M has two predecessors: L and H

• L is an ancestor, so it is a semidominator candidate

• H is a non-ancestor, so we look at its ancestors: H, E, C

• Their semidominators are C, C, and A

• A has the smallest dfnum, so it is the semidominator
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Dominator Theorem

Consider the spanning tree path from � � semi
�� to �.

Let 5 be the node with smallest numbered 
semidominator, i.e. minimum dfnum
semi
5��.

Then:

idom � � 6semi �      if semi 5 � semi
��
idom 5     if semi 5 � semi
��

• Now that we have semidominators, we can compute dominators

• Suppose we have computed s, the semidominator for n

• Consider the path from s to n, using tree edges, skipping s but including n

• Look at the semidominators of each node of that path

• Let y be the node whose semidominator has the smallest dfnum

• i.e. y is the node with the “highest” semidominator

• Consider the diagram and pretend the path d -> x -> y doesn’t exist

• s is the semidominator of n, so we look at the s -> y -> n path

• y’s semidominator is s, and that is the highest semidominator

• semi(y) = semi(n) so the semidominator is the immediate dominator

• Now suppose there is a d -> x -> y path that bypasses s

• semi(n) = s, but semi(y) = d

• Then idom(y) = idom(n)
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[Appel and Palsberg, 2004]

• Let’s look at some examples

• I’s semidominator is B

• Consider the tree path from B to I, the nodes are I, F, and D

• Their semidominators are B, D, B

• Nodes with the highest semidominator are I and D, with semidominator B

• This is the semidominator of I, so it is the immediate dominator of I

• L’s semidominator is F

• Its tree path contains I, L

• Their semidominators are B, F

• Highest semidominator is B

• So I’s dominator is L’s dominator, which is B
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Lengauer-Tarjan Algorithm

1. Perform DFS to number nodes and create the depth-first 
spanning tree

2. For each node � (in decreasing dfnum order):

• Use the Semidominator Theorem to compute semi(�)
• Insert � into the spanning forest

3. Implicitly define the idom by applying the first clause of 
the Dominator Theorem

4. For each node � (in increasing dfnum order):

• Explicitly define the idom by applying the second clause of the 
Dominator Theorem

• Those are the ideas behind the LT algorithm

• Still a bit hard for me to get the intuition, maybe looking at the proofs would help

• Now the trick is how to compute these, and the algorithm is also pretty complicated

• Step 1 is easy: perform DFS to number the nodes

• Step 2: consider nodes in descending dfnum order, i.e. bottom up

• Look at predecessors and compute semidominators

• Maintain a spanning forest representing the CFG; here we insert n into the forest

• Step 3: apply first clause of dominator theorem

• If semidominators are equal, then that is the dominator

• We can’t apply the second clause, because we don’t yet know the dominators

• Step 4: iterate in increasing dfnum order now, top down

• Now that we know dominators, we can finish applying the dominator theorem
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Spanning Forest

• Build a spanning forest as the CFG is traversed

• When � is processed, only non-ancestors of � are in the 
forest

• link(p, n)
• Add the edge 
�, �� to the spanning forest

• ancestorWithLowestSemi(v)
• Search upwards in the forest, starting from "
• Find the ancestor of " whose semidominator has the 

lowest dfnum

• The spanning forest keeps track of the nodes we have processed

• I.e. when n is processed, only its non-ancestors are in the forest

• E.g. when n is processed, u and v are already in the forest

• This is because we iterate in decreasing dfnum order

• u and v were encountered before n, so they have higher dfnums

• So when we encounter n, only higher numbered nodes are in the forest

• API allows us to add an edge to the spanning forest

• Or we can query for the ancestor with semidominator with lowest dfnum

• i.e. ancestor with “highest up the tree” semidominator

• ancestorWithLowestSemi(v) means we would search v and u, but not s, d, or r
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[Appel and Palsberg, 2004]

• If the spanning forest is implemented naively, queries are O(n)

• Overall algorithm complexity would be O(n^2)

• Start with (a)

• If we query on w, we follow the path all the way up to a1

• Suppose we add more nodes to the end of a1, giving us (b)

• If we query w again, we follow the entire path again to get to a1, before traversing the new 

links

• We want to be smart, use “path compression” so queries are O(log n)

• Idea behind path compression

• Every time we query, we update the links so that the path becomes shorter

• We query from w, and once we reach the end (a1), we set each node to point to a1

• This is image (c)

• Then, when we add a2 and a3, the query goes from w to v, and then jumps straight to a1
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[Appel and Palsberg, 2004]

• This is the pseudocode

• It’s succinct and each individual statement isn’t very complicated

• But there are a lot of subtleties

• When we compute semi(n), we have this bucket for temporary storage

• We can’t proceed until we’ve added n to the spanning forest

• This is what Link(p, n) is for

• But then we iterate over bucket[p] instead of bucket[s]

• And then the ancestorWithLowestSemi implementation is a bit complicated
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Implementation in Ř

Straightforward translation from pseudocode to C++

• About 100 LOC, without comments

https://github.com/reactorlabs/rir/blob/b265f9e/rir/src/com
piler/util/cfg.cpp#L52

• However, it was a very straightforward translation to C++

• Only 100 LOC, without comments

• You can find the annotated implementation on GitHub
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