

- This talk will define dominators, briefly discuss some applications and the history, and then focus on algorithms for computing dominators
- The focus will be on the Lengauer-Tarjan algorithm, which I implemented for RIR

- We're talking about control-flow graphs for function
 - So these are directed graphs, and every function has a start node
- A node n may have multiple dominators, but only one immediate dominator
- The dominator tree directly encodes immediate dominance
 - But (non-immediate) dominance can be read from the tree

- Let's look at some examples
- Node 3: every path from the start (1) contains 1, 2, 3
- Node 7: many ways to get there, thanks to branches
 - 4 -> 5 -> 7 or 4 -> 6 -> 7
 - Also loops before 4, but those are optional
 - So we see that 5 and 6 do not dominate 7, but 4 does
 - And 4 is the immediate dominator

- Probably the most important application is SSA
 - This is an intermediate representation where each variable is assigned only once
 - Use phi nodes to represent merges of values at control-flow merge points
 - SSA itself has many applications for optimizations, because we know that every variable is defined before used, and written to only once
- Dominance frontier of a node is where that node's dominance "ends"
 - It is where there is a merge of control-flow and data-flow , i.e. where phi nodes need to be inserted
- We use dominance for many other optimizations in RIR
 - Finding loops: node d dominates n, but there is an edge from n to d
 - Hosting instructions: move instructions up to an earlier node

	Before		After	
	Total	Average	Total	Average
Benchmark (5 iterations)	89,205 ms	17,841 ms	82,425 ms	16,485 ms
Constructing the dominator tree	4,988 ms	80 µs	90 ms	1.5 µs
a dom? b	42 ms	46.1 ns	169 ms	182 ns
a idom? b	186 ms	24 ns	153 ms	19 ns

- The data for this table is very rough, but it was enough to see problem areas and improvements
- This whole adventure started when I was looking at a benchmark that we were very slow on
- Ran a profiler, saw a lot of time spent constructing the dominator tree
 - Even though we don't count warmup in our benchmarks, this still seemed concerning
 - But this table includes warmup
- There are 5 iterations of the benchmark, but each iteration compiles hundreds of functions
 - Some functions are much larger than others, e.g. 200, 300, or even 700 nodes
 - And dominators are computed multiple times
- Made the mistake of looking at total time, rather than average time
 - I thought the implementation was inefficient, but everything I tried made it worse, it's hard to speed up something that takes 80 us
 - Can't outsmart the STL
 - Turns out we needed a better algorithm
- The old algorithm explicitly stored the dominance relation, but now we read it from the dominator tree

- This is actually a very old problem in computer science
- The 1972 algorithm presumably resembles the ones we see in textbooks today, but I couldn't find the paper
- There were many other quadratic algorithms, until 1979
- After that, there was a focus on almost linear algorithms
 - But in practice, these were often too slow on "real" graphs, and only profitable on extremely large graphs

Data-flow Equations

Let Dom(n) be the set of nodes that dominate n. Then:

$$Dom(s_0) = \{s_0\}$$

$$Dom(n) = \{n\} \cup \left(\bigcap_{p \in preds(n)} Dom(p)\right)$$

Iterate until you reach a fixed point. $O(n^2)$ time complexity, and very slow in practice

- We can define dominators as a classic dataflow problem
 - Computing sets of nodes, base case is that the start node dominates itself
 - Forward analysis, intersect the dominators of your predecessors
 - And every node dominates itself
- RIR used a variant of this
 - It seemed that the merge (set intersection) was the most expensive part

- Want to briefly show this completely different algorithm
- It works by removing nodes one at a time
 - All nodes now unreachable must be dominated by the node that was removed!

- In 2006, Cooper, Harvey, and Kennedy made the following observations
 - Set intersection is the bottleneck
 - But this could be sped up (and done with efficient space requirements) if the sets had a consistent ordering
 - So intersection is just a walk through both sets in order, comparing elements
 - Ordering is the path through the dominator tree
- Implementation is very simple
 - Original paper claims it is faster than the LT algorithm
 - But a later paper says that wasn't the case, there were issues in Cooper, Harvey, and Kennedy's implementation

- A bit of handwaving here: m = #edges, n = #nodes
 - Some presentations will use a value N = m + n
 - In the worst case, we know that $m = O(n^2)$ but it's probably not that bad in practice
- The paper has a simple version that is O(m log n) and a sophisticated version whose complexity involves the inverse Ackerman function
- In the original paper, the sophisticated version was faster
 - In a later paper, this was only true for extremely large graphs
 - So it seems the simple version is "fast enough" in practice
 - The rest of this talk is about the Lengauer-Tarjan algorithm
 - The details are a bit involved

٠

- And even the implementation is a bit tricky
- But transcribing the pseudocode was straightforward

- First, we need to look at depth-first spanning trees
 - Traverse the CFG using DFS and number nodes, this constructs a spanning tree
 - Nodes are numbered in order of encounter
 - Edges in the CFG can be classified as "tree edges" or "non-tree edges"
- Note that these are not "if and only if"
 - If you know a node is the ancestor or descendent of another node, can compare dfnums
 - But dfnums are meaningless if two nodes are unrelated

- Solid edges are tree edges, dashed edges are non-tree edges
- DFS means when we start at A, and see B and C, we visit all of B's subtree before visiting C
- Let's look at ancestors
 - B is an ancestor of M, because B is 2 and M is 7
 - C is not an ancestor of M
 - There is a path in the original CFG, but not the depth-first tree
- May have encountered some terminology, but it's not needed for dominators
 - Forward edge: non-tree edge from a node to its descendent, e.g. C -> M
 - Back edge: non-tree edge from a node to its ancestor, e.g. E -> C
 - Cross edge: non-tree edge to a node with no ancestor relation, e.g. H -> M

• Why is this important for dominators?

•

- Immediate dominator of n is an ancestor of n!
- This gives a very rough guess for idom candidates, but we can do better
 - What about the cases where an ancestor x is not a dominator?
- There must be some detour that bypasses x
 - Look at the node where the detour starts

- Let's formalize that idea
 - For now, ignore the d -> x -> y path in the image
- We want to find s, the semidominator of n
 - s is the highest ancestor of n, with a detour path to n using non-ancestor nodes
 - s and n are ancestors of n, but the nodes in between cannot be ancestor nodes
 - Note that such a path may simply be the edge from s to n; that counts
- Intuitively, what does this mean?
 - There is a path from s to n using only tree edges
 - There is a "detour" path that contains non-tree edges
 - s is the highest ancestor of n with this property
- If there is a path from the start to s, there are two branches to n
 - s is possibly the immediate dominator of n
 - But an exception is if s itself is bypassed, e.g. d -> x -> y

- How do we compute semidominators? We use the Semidominator Theorem.
- We start by looking at the predecessors of n in the CFG
 - If the pred is an ancestor, that's a candidate for semidominator. Recall that preds can be semidominators, because the "bypassing path" can be empty
 - If the pred is a non-ancestor, it's more complicated
 - Consider all the ancestors of the pred that aren't ancestors of n, i.e. nodes on the "bypassing path"
 - The semidominators of those nodes are candidates for semi(n)
 - Note that a semidominator can be a predecessor or the "start of a bypassing path," e.g. a non-tree path from u to v
- Take the one with the lowest dfnum, i.e. the highest node up the tree
- This may be clearer with examples

- Let's look at a few examples
- E has only one predecessor, C
 - C is an ancestor of E, so it is a candidate for semi(E)
 - It is the only one, so it is the semidominator
- H has two predecessors: E and C
 - C and E are both ancestors, so they are both candidates
 - But C has the lower dfnum, so it is the semidominator
- L has two predecessors: I and K
 - I is an ancestor, so it is a candidate semidominator
 - K is a non-ancestor, so look at all of K's ancestors (including K) that are not ancestors of L
 - This is only K
 - Look at K's semidominator, F, which is a candidate semidominator for L
 - F has a smaller dfnum than I, so F is the semidominator
- M has two predecessors: L and H
 - L is an ancestor, so it is a semidominator candidate
 - H is a non-ancestor, so we look at its ancestors: H, E, C
 - Their semidominators are C, C, and A
 - A has the smallest dfnum, so it is the semidominator

- Now that we have semidominators, we can compute dominators
- Suppose we have computed s, the semidominator for n
 - Consider the path from s to n, using tree edges, skipping s but including n
 - Look at the semidominators of each node of that path
 - Let y be the node whose semidominator has the smallest dfnum
 i.e. y is the node with the "highest" semidominator
- Consider the diagram and pretend the path d -> x -> y doesn't exist
 - s is the semidominator of n, so we look at the s -> y -> n path
 - y's semidominator is s, and that is the highest semidominator
 - semi(y) = semi(n) so the semidominator is the immediate dominator
- Now suppose there is a d -> x -> y path that bypasses s
 - semi(n) = s, but semi(y) = d
 - Then idom(y) = idom(n)

- Let's look at some examples
- I's semidominator is B
 - Consider the tree path from B to I, the nodes are I, F, and D
 - Their semidominators are B, D, B
 - Nodes with the highest semidominator are I and D, with semidominator B
 - This is the semidominator of I, so it is the immediate dominator of I
- L's semidominator is F
 - Its tree path contains I, L
 - Their semidominators are B, F
 - Highest semidominator is B
 - So I's dominator is L's dominator, which is B

- Those are the ideas behind the LT algorithm
 - Still a bit hard for me to get the intuition, maybe looking at the proofs would help
 - Now the trick is how to compute these, and the algorithm is also pretty complicated
- Step 1 is easy: perform DFS to number the nodes
- Step 2: consider nodes in descending dfnum order, i.e. bottom up
 - Look at predecessors and compute semidominators
 - Maintain a spanning forest representing the CFG; here we insert n into the forest
- Step 3: apply first clause of dominator theorem
 - If semidominators are equal, then that is the dominator
 - We can't apply the second clause, because we don't yet know the dominators
- Step 4: iterate in increasing dfnum order now, top down
 - Now that we know dominators, we can finish applying the dominator theorem

- The spanning forest keeps track of the nodes we have processed
 - I.e. when n is processed, only its non-ancestors are in the forest
- E.g. when n is processed, u and v are already in the forest
 - This is because we iterate in decreasing dfnum order
 - u and v were encountered before n, so they have higher dfnums
 - So when we encounter n, only higher numbered nodes are in the forest
- API allows us to add an edge to the spanning forest

٠

- Or we can query for the ancestor with semidominator with lowest dfnum
 - i.e. ancestor with "highest up the tree" semidominator
 - ancestorWithLowestSemi(v) means we would search v and u, but not s, d, or r

- If the spanning forest is implemented naively, queries are O(n)
 - Overall algorithm complexity would be O(n^2)
 - Start with (a)
 - If we query on w, we follow the path all the way up to a1
 - Suppose we add more nodes to the end of a1, giving us (b)
 - If we query w again, we follow the entire path again to get to a1, before traversing the new links
- We want to be smart, use "path compression" so queries are O(log n)
- Idea behind path compression
 - Every time we query, we update the links so that the path becomes shorter
 - We query from w, and once we reach the end (a1), we set each node to point to a1
 - This is image (c)
 - Then, when we add a2 and a3, the query goes from w to v, and then jumps straight to a1

```
Dominators() =
   N \leftarrow 0; \forall n. bucket[n] \leftarrow \{\}
   \forall n. dfnum[n] \leftarrow 0, semi[n] \leftarrow ancestor[n] \leftarrow idom[n] \leftarrow samedom[n] \leftarrow none
   DFS(none, r)
   for i \leftarrow N - 1 downto 1
                                                                                        DFS(node p, node n) =
       n \leftarrow vertex[i]; p \leftarrow parent[n]; s \leftarrow p
                                                                                            if dfnum[n] = 0
        for each predecessor v of n
                                                                                              dfnum[n] \leftarrow N; vertex[N] \leftarrow n; parent[n] \leftarrow p
            if dfnum[v] \leq dfnum[n]
                                                                                              N \leftarrow N + 1
               s' \leftarrow v
                                                                                              for each successor w of n
            else s' \leftarrow semi[AncestorWithLowestSemi(v)]
                                                                                                  DFS(n, w)
            if dfnum[s'] < dfnum[s]
               s \leftarrow s'
                                                                                         AncestorWithLowestSemi(node v) =
        semi[n] \leftarrow s
                                                                                             a \leftarrow ancestor[v]
        bucket[s] \leftarrow bucket[s] \cup \{n\}
                                                                                             if ancestor[a] \neq none
        Link(p, n)
                                                                                               b \leftarrow \text{AncestorWithLowestSemi}(a)
        for each v in bucket[p]
                                                                                               ancestor[v] \leftarrow ancestor[a]
            y \leftarrow \text{AncestorWithLowestSemi}(v)
                                                                                               if dfnum[semi[b]] <
            if semi[y] = semi[v]
                                                                                                     dfnum[semi[best[v]]]
               idom[v] \leftarrow p
                                                                                                  best[v] \leftarrow b
            else samedom[v] \leftarrow y
                                                                                             return best[v]
        bucket[p] \leftarrow \{\}
   for i \leftarrow 1 to N - 1
                                                                                         Link(node p, node n) =
       n \leftarrow vertex[i]
                                                                                             ancestor[n] \leftarrow p; best[n] \leftarrow n
        if samedom[n] \neq none
          idom[n] \leftarrow idom[samedom[n]]
                                                                                                                 [Appel and Palsberg, 2004]
```

- This is the pseudocode
 - It's succinct and each individual statement isn't very complicated
- But there are a lot of subtleties
 - When we compute semi(n), we have this bucket for temporary storage
 - We can't proceed until we've added n to the spanning forest
 - This is what Link(p, n) is for
 - But then we iterate over bucket[p] instead of bucket[s]
- And then the ancestorWithLowestSemi implementation is a bit complicated

- However, it was a very straightforward translation to C++
- Only 100 LOC, without comments
- You can find the annotated implementation on GitHub

