Precise Dataflow Analysis of
Event-Driven Applications

Ming-Ho Yee, Ayaz Badouraly, Ondrej Lhotak, Frank Tip, Jan Vitek
January 23, 2020

Event-Driven Programming

var fs = require('fs');
var sum;
fs.readdir('.", |function f(err, filenames) {
if (err) throw err;
sum = 0;
filenames.forEach(function g(fn) {
fs.stat('./" + fn, [function h(err, stats) {
if (err) throw err;
var size = stats.size;
sum += size;

console.log(fn + ': ' + size);
console.log('sum: ' + sum);
})s
}) s
})s

console.log('done');

This is an example of event-driven programming

* Functions ‘f’ and ‘h’ are registered as callbacks

* ‘g’ is synchronous

* When the program runs, the callbacks are registered but execute later

* ‘done’ is printed

* When ‘readdir’ returns, its result is an array of filenames which is passed

into ‘f’

* For each filename, call ‘stat’ and register a callback

* Sum up the file sizes
Now consider doing a static analysis

* The analysis does not know what order the callbacks execute in

* So the analysis observes that ‘sum’ could be read before it is written to

* Therefore, “bug,” even though this never occurs in a concrete execution
Goal: build a static analysis that accounts for the order of event handler execution

Modeling Events

(e, f) € M —map of events to functions
f € Q —queue of functions

* Register function f on event e
* Add (e, f)to M

* Emit event e
* Look up (e, f)in M, add f to Q

* Invoke function f
* When the call stack is empty, remove f from Q and invoke f

* Program maintains a map M of events to functions, and a queue Q of functions
* There are three operations: register, emit, and invoke

Register function f on event e: add the pair <e, f>to M
Emit event e: look up the pair <e, f>in M and add f to Q
Invoke function f
* When the top-level function finishes, the call stack is empty
* Continuously remove a function f from Q, and invoke f
* This may register additional event handlers and/or emit additional
events
* Execution terminates when Q is empty

IFDS and IDE Frameworks

6:00 mark
* We take a given IFDS analysis and augment it with information about the event
handler ordering
* We do so by transforming to the IDE framework, which generalizes IFDS

IFDS — Definition

Interprocedural Finite Distributive Subset

P = <G*JD;F1MF)|_I>

* G* = (N*,E*)is the supergraph

* D is a finite set of dataflow facts

« F € 2P - 2P js a set of distributive dataflow functions

* Mp: E* = F assigns dataflow functions to supergraph edges
* M is the meet operator

Distributive: f(x; M xy) = f(x) N f(xy)

* Interprocedural analysis, computes subset of a finite set, and dataflow functions
are distributive
* Aninstance is described as a 5-tuple

You must provide the program to be analyzed, and the specification of a
dataflow analysis

G* is the interprocedural control-flow graph, also called a supergraph

D is a finite set of dataflow facts, e.g. live variables, uninitialized variables,
busy expressions, that the analysis computes

F is a set of distributive functions that describe how the dataflow facts are
updated

M assigns the dataflow functions to edges of the supergraph

Meet is how to merge the information from two separate branches

Distributive is the key requirement: can compute the result by looking at the input

set element-by-element

l.e., only need to look at one element of the input at a time

IFDS — Solution

IFDS algorithm computes a meet-over-valid-paths solution:

MV Pipps(P) = An.My,eypiny Me(p)(0)

Valid path: respects call/return of function calls

* Solution is called the “meet-over-valid-paths”
* Avalid path means a function returns to its call site and not some other call

site

* For a given program node ‘n’, compute all the valid paths ‘p’ from start of the
program to n

Compose the transfer functions along that path ‘p’

Apply the empty set (initial value)

This computes the dataflow result for a particular path ‘p’

Then take the meet over all those paths to get a combined answer

IFDS — Representation Relation

Distributive dataflow function < representation relation

f=AS.ifyeSvzeSs
then S U {x} Ry =
else S\ {x}

Key: every distributive dataflow function has a representation relation
* i.e., a bipartite graph
Need a “zero” node (roughly corresponding to the empty set), plus nodes for each
element in the set D
Distributive: based on only one input element, what is the output?
* Then merge the inputs
Exact details not super important here

IFDS — Exploded Supergraph

Stitch all bipartite graphs to get the exploded supergraph:
GF = (N*,E¥)

P ={(G*,D,F,Mg,N)is encoded by G}

d € MV P;rps(P)(n) & (n,d) is reachable from start node

Each edge in the supergraph has a dataflow function
* Therefore each edge in the supergraph has a representation relation
 Stitch all these relations together to get the exploded supergraph
The exploded supergraph encodes an IFDS problem instance, i.e. both the program
to be analyzed and the dataflow analysis
Transform the dataflow analysis into a graph reachability problem
* dis a dataflow fact for node n if <n,d> is reachable

IDE — Generalization of IFDS

Interprocedural Distributive Environment

L is a finite-height lattice used for the analysis

* Environment D — L
¢ Dataflow set D

* Distributive environment transformer (D - L) - (D — L)
* Distributive dataflow function D - D

12:00 (+6:00) mark
* IDE is a generalization of the IFDS framework
* First, we need a lattice L
* A set with a partial order, least upper bound, and greatest lower bound
* Given two elements, can find a lub or glb that “captures” the
information in the two elements
* This is used for the static analysis, so it needs to have finite height
* As the analysis runs, it computes values in the lattice
* Values can only go in one direction (in this case, down the lattice), so
termination is guaranteed
* |DE computes environmentsin Dto L
* Generalization of the dataflow set D in IFDS
* Instead of computing elements of a set, compute values associated with
those elements
* Update environments with environment transformers
* Generalization of the dataflow functions in IFDS
* Environment transformers attached to each edge of the graph

IDE — Formal Definition
P =(G*,D, L, Mg,,,)

Meet-over-valid-paths solution:

MV Ppg (P) = An-rlpeVP(n) Mgpy (P) (TEnv)

Formally, IDE is specified by a 4-tuple
* G*is the supergraph

D is a finite set
L is the lattice
M_Env assigns environment transformers to each edge of the supergraph

Solution is also a meet-over-valid-paths solution
* Very similar to IFDS

Difference is using M_Env instead of M_F, and initializing with Top_Env
instead of emptyset

10

IDE — Pointwise Representation

* Edges are labelled with micro-functions in L — L

env

t(env)

t(env)(y) = fo,,(T) N (Nyrepfary(env(d”)))

* |IDE has a pointwise representation, similar to the IFDS representation relation
* Like the IFDS bipartite graph, but each edge is labelled with a micro-
function
* Eg.,g80,81,82
* |dea is that we can take the lattice value an element d is mapped to, and get the
“output lattice value”
* By doing this over all elements d and taking the meet, we can reconstruct
the updated environment

IDE — Labelled Exploded Supergraph

* Like IFDS exploded supergraph

* But each edge is labelled with a micro-function

(G*,EdgeFn)

P = (G*,D, L, Mg,,) is encoded by (G5, EdgeFnp)

* Again, we can stitch the pointwise representations together
* Form an exploded supergraph, where each edge is labelled by a micro-
function
* This is a representation of an IDE problem instance
* To solve, require two phases
* Run the graph reachability algorithm to determine which nodes are
reachable
* This also composes the micro-functions along the path
* Then apply the composed micro-function to the dataflow fact
* Assumes micro-function composition and application can be done in
constant time

12

IFDS to IDE Transformation

20:00 (+8:00) mark

13

Transformation Overview

Transform IFDS problem instance to IDE problem instance

T:G* - (G*,EdgeFn)

Assign micro-functions to edges of the exploded supergraph

Our goal is to transform an IFDS problem to an IDE problem
* We are given some existing IFDS analysis
* The transformation works on the exploded supergraph and adds labels
* Does not change the exploded supergraph (= program being analyzed +
original analysis)
Idea is to use the micro-functions to encode the event handler operations (register,
emit, invoke)
IFDS analysis asks “is dataflow fact d present at node n?”
IDE analysis asks “what lattice value is associated with element d at node n?”
* In this case, what is the state of the event handler?
* Ifitis “infeasible” we can ignore the result on this path

14

Event Handler State — Mode|

emit regisler registeremilinvoke

cimit

For now, assume a single event handler in the program
An event handler has three states: start (S), registered (R), and emitted (E)
* Transition actions are “register”, “emit”, and “invoke”
Note that the handler can get “stuck” if it invokes from S or R
* This never happens in a real program execution
* But we model it with the infeasible (X) state for an analysis
Lattice ordering is for merging results from two branches
* E.g. one branch has “infeasible” and the other branch has “registered”
* We have to be conservative and assume the state after the branch is

“registered”

15

Event Handler State — Micro-functions

* Three basic micro-functions, plus identity
* Most edges are labelled with the identity micro-function

register(X) = X emit(X) =X invoke(X) = X
register(S) = R emit(S) =S invoke(S) = X
register(R) =R emit(R) = E invoke(R) =X
register(E) = E emit(E)=E invoke(E) = E
register if edge eregisters the handler
EdgeFn(e) = emit if edge e emits an event for the handler
invoke if edge einvokes the handler from the event loop
id otherwise

16

Our analysis requires three basic micro-functions, plus the identity

* These micro-functions correspond to the event handler operations:

register, emit, and invoke

* Most edges are labelled with the identity micro-function
Register: only update S state to R
Emit: only update R state to E
Invoke: update non-E states to X
EdgeFn: micro-functions correspond to edges that involve an event handler
operation
As IDE algorithm traverses the exploded supergraph, it composes these micro-
functions along the paths

* Initial stateis S

* E.g.invoke(emit(register(S))) = E is OK, but invoke(register(S)) = X is not
Notice that we can represent each micro-function as a 4-tuple

* Only 8 bits needed to represent 256 functions

16

Multiple Event Handlers

* Define the IDE lattice L' = H - L
* H is the set of event handlers in the program
¢ L is the event handler state lattice

* IDE computes environments: D —» (H — L)
* For each node n and fact d, we have a map of handlers to states

* Micro-functions: (H - L) -» (H —» L)
* Alternate representation: H — (L = L)

Now we need to support multiple event handlers
We use the lattice ' =H \to L
* His the set of event handlers in the program
* Lis the event handler state lattice we just saw
Recall: IDE computes an environment D \to L' at each node n
* Now, for each node n, we have an environment D \to (H \to L)
* For a given dataflow fact at node n, we have a map m : H \to L with states
for each event handler
So micro-functions are in (H \to L) \to (H \to L) which are hard to represent
* But note that the state of an event handler does not depend on any other
handler
* So we can represent micro-functions in H \to (L \to L)
* We have a map from event handlers to micro-functionsin L \to L
So when EdgeFn assigns micro-functions, it has to pick the micro-function for the
correct event handler

17

Transforming IDE Results

For a result, if any handler is in state X, discard that result

IFDS result: N* - D
IDE result: N* > (D —» (H - L))

Idea of transformation: each result d has a map of event handlers to states
* If any event handler has state X, then the result is impossible
* |t was computed along some path that did not respect the ordering
constraints of an event handler
* So discard that result
Formally, we have an “untransformation”
* |IFDS result is a map from nodes to elements in D
* IDE result is a map from nodes to environments, where an environment
maps elements of D to event handler maps
Untransformation returns a map from nodes to elements in D
* For the given node, look it up in the IDE result, and find all elements d
where all handlers are not in state X

18

Theoretical Properties

Soundness
Result computed along concrete execution path
=>» Result computed by our technique

Precision

Result from our technique € Result computed by IFDS

Formal statements and proofs in the paper

* Transformation is sound
* Consider running the IFDS analysis on a concrete path.

* Consider our technique: transform IFDS to IDE, run it, untransform it.

* Results on the concrete path will be returned by our technique.
* Transformation is precise

e Consider running the IFDS analysis on an entire program.

* Consider our technique: transform IFDS to IDE, run it, untransform it.

* Our results will be a (non-strict) subset of the IFDS results.

19

Conclusion

* Problem: static analysis of event-driven programs does not
respect event handler ordering

* Our approach: transform an existing IFDS problem to an IDE
problem
* IDE problem maintains information about event handler state

* Transformation is sound and precise
* Formal statements and proofs in paper

20

30:00 (+10:00) mark

20

Extra Slides

21

IFDS — Representation Relation
Distributive dataflow function < representation relation
R, = {(0,0)} U

{(0,d) | d € g(®)} U
{(dy,dy) d; € g({d,1}) ANd; & g(D)}

f=AS.ifyeSvzeS o x ¥
then S U {x} °
else S\ {x}

Rf = {(0, 0>r (y'x>v ()’J’% (er>: (Z, Z)}

This is the formal definition for the representation relation

<0,0> is always in the relation and roughly corresponds to the empty set

<0,d> corresponds to facts “created” or in the “gen set”

<d_1, d_2> corresponds to inputs-outputs, but there is a “subsumption” to avoid

excess edges

* If the output is already “created” by the empty set, then we don’t care

what its input is
* This condition does not apply for the current example

22

IDE — Lattices

If L is a lattice with top element T, the pair L X L is a lattice:
* Top: (T, T)
* Meet: (x1,y;) M {x2,¥2) = (x; N xp,¥1 N yy)

The map D — L is also a lattice:
*Top: Tgpy = Ad. T
* Meet: my; Mm, = Ad. (envl(d) M env, (d))

Given a lattice L, we can build up “bigger” lattices, like pairs and maps
For a pair, the top value is when both elements of the pair are top
* The meet is done pointwise, for each element
* We can extend this to n-tuples
For a map D to L, it doesn’t matter what D is
* The top value is the map that maps every element to top
* The meet of two maps is done pointwise
* Note that we could interpret the map as a function
General idea is to do the operations per-element

23

Transforming IDE Results

For a result, if any handler is in state X, discard that result

IFDS result: N* — D
IDE result: N* — (D - (H - L))

“Untransform” function U applied to IDE result R:

UR)=n{d|VYheH.R(n)(d)(h) # X}

Idea of transformation: each result d has a map of event handlers to states

If any event handler has state X, then the result is impossible

It was computed along some path that did not respect the ordering
constraints of an event handler

So discard that result

Formally, we have an “untransformation”

IFDS result is a map from nodes to elements in D
IDE result is a map from nodes to environments, where an environment
maps elements of D to event handler maps

Untransformation returns a map from nodes to elements in D

For the given node, look it up in the IDE result, and find all elements d
where all handlers are not in state X

24

Theoretical Results — Soundness

Let P be an IFDS problem, p = [start, ..., 1| be a concrete
execution path, and d € D a dataflow fact. Then:

d e M:(p)(®) =deU() (n)

* The transformation is sound
* Consider an IFDS problem P and a concrete execution path p
* Take the dataflow functions along p, compose them, and apply it to the
empty set
* Will get some result set containing dataflow facts d
* These results will be returned by our transformation
* l.e. transform P to IDE, solve it, untransform it, and then get its
result

25

Theoretical Results — Precision

Let P be an IFDS problem and n € N~ be any node in the
supergraph. Then:

U()(n) C MV Pipps(P)(n)

* The transformation is precise
* Take an IFDS problem P, and a node n

On the RHS, we solve the IFDS problem and get some set of results

On the LHS, we transform to IDE, solve that IDE problem to get results, and
untransform those results

Then we compare the two results for the given node n

The LHS will be a subset of the RHS, because we filtered out the infeasible

results

26

