
Precise Dataflow Analysis of

Event-Driven Applications
Ming-Ho Yee, Ayaz Badouraly, Ondřej Lhoták, Frank Tip, Jan Vitek

January 23, 2020

1

Event-Driven Programming

var fs = require('fs');

var sum;

fs.readdir('.', function f(err, filenames) {

if (err) throw err;

sum = 0;

filenames.forEach(function g(fn) {

fs.stat('./' + fn, function h(err, stats) {

if (err) throw err;

var size = stats.size;

sum += size;

console.log(fn + ': ' + size);

console.log('sum: ' + sum);

});

});

});

console.log('done');

2

• This is an example of event-driven programming

• Functions ‘f’ and ‘h’ are registered as callbacks

• ‘g’ is synchronous

• When the program runs, the callbacks are registered but execute later

• ‘done’ is printed

• When ‘readdir’ returns, its result is an array of filenames which is passed

into ‘f’

• For each filename, call ‘stat’ and register a callback

• Sum up the file sizes

• Now consider doing a static analysis

• The analysis does not know what order the callbacks execute in

• So the analysis observes that ‘sum’ could be read before it is written to

• Therefore, “bug,” even though this never occurs in a concrete execution

• Goal: build a static analysis that accounts for the order of event handler execution

2

Modeling Events

�, � ∈ � – map of events to functions

� ∈ � – queue of functions

• Register function � on event �
• Add ⟨�, �⟩ to �

• Emit event �
• Look up ⟨�, �⟩ in �, add � to �

• Invoke function �
• When the call stack is empty, remove � from � and invoke �

3

• Program maintains a map M of events to functions, and a queue Q of functions

• There are three operations: register, emit, and invoke

• Register function f on event e: add the pair <e, f> to M

• Emit event e: look up the pair <e, f> in M and add f to Q

• Invoke function f

• When the top-level function finishes, the call stack is empty

• Continuously remove a function f from Q, and invoke f

• This may register additional event handlers and/or emit additional

events

• Execution terminates when Q is empty

3

IFDS and IDE Frameworks

4

6:00 mark

• We take a given IFDS analysis and augment it with information about the event

handler ordering

• We do so by transforming to the IDE framework, which generalizes IFDS

4

IFDS – Definition

Interprocedural Finite Distributive Subset

 = �∗, �, �, �� ,⊓

• �∗ = �∗, �∗ is the supergraph

• � is a finite set of dataflow facts

• � ⊆ 2� → 2� is a set of distributive dataflow functions

• ��: �∗ → � assigns dataflow functions to supergraph edges

• ⊓ is the meet operator

Distributive: � �� ⊓ �� = � �� ⊓ � ��

5

• Interprocedural analysis, computes subset of a finite set, and dataflow functions

are distributive

• An instance is described as a 5-tuple

• You must provide the program to be analyzed, and the specification of a

dataflow analysis

• G* is the interprocedural control-flow graph, also called a supergraph

• D is a finite set of dataflow facts, e.g. live variables, uninitialized variables,

busy expressions, that the analysis computes

• F is a set of distributive functions that describe how the dataflow facts are

updated

• M assigns the dataflow functions to edges of the supergraph

• Meet is how to merge the information from two separate branches

• Distributive is the key requirement: can compute the result by looking at the input

set element-by-element

• I.e., only need to look at one element of the input at a time

5

IFDS – Solution

IFDS algorithm computes a meet-over-valid-paths solution:

��
����
 = � .⊓"∈#$ % �� & ∅

Valid path: respects call/return of function calls

6

• Solution is called the “meet-over-valid-paths”

• A valid path means a function returns to its call site and not some other call

site

• For a given program node ‘n’, compute all the valid paths ‘p’ from start of the

program to n

• Compose the transfer functions along that path ‘p’

• Apply the empty set (initial value)

• This computes the dataflow result for a particular path ‘p’

• Then take the meet over all those paths to get a combined answer

6

IFDS – Representation Relation

Distributive dataflow function  representation relation

� = �(. if) ∈ (∨ + ∈ (

then (∪ {�}

else (∖ {�}

0 x y z

01 =

7

• Key: every distributive dataflow function has a representation relation

• i.e., a bipartite graph

• Need a “zero” node (roughly corresponding to the empty set), plus nodes for each

element in the set D

• Distributive: based on only one input element, what is the output?

• Then merge the inputs

• Exact details not super important here

7

IFDS – Exploded Supergraph

Stitch all bipartite graphs to get the exploded supergraph:

�$
= �#, �#

 = �∗, �, �, �� ,⊓ is encoded by �$
#

3 ∈ ��
����
  ⟨ , 3⟩ is reachable from start node

8

• Each edge in the supergraph has a dataflow function

• Therefore each edge in the supergraph has a representation relation

• Stitch all these relations together to get the exploded supergraph

• The exploded supergraph encodes an IFDS problem instance, i.e. both the program

to be analyzed and the dataflow analysis

• Transform the dataflow analysis into a graph reachability problem

• d is a dataflow fact for node n if <n,d> is reachable

8

IDE – Generalization of IFDS

Interprocedural Distributive Environment

4 is a finite-height lattice used for the analysis

• Environment � → 4
• Dataflow set �

• Distributive environment transformer � → 4 → � → 4
• Distributive dataflow function � → �

9

12:00 (+6:00) mark

• IDE is a generalization of the IFDS framework

• First, we need a lattice L

• A set with a partial order, least upper bound, and greatest lower bound

• Given two elements, can find a lub or glb that “captures” the

information in the two elements

• This is used for the static analysis, so it needs to have finite height

• As the analysis runs, it computes values in the lattice

• Values can only go in one direction (in this case, down the lattice), so

termination is guaranteed

• IDE computes environments in D to L

• Generalization of the dataflow set D in IFDS

• Instead of computing elements of a set, compute values associated with

those elements

• Update environments with environment transformers

• Generalization of the dataflow functions in IFDS

• Environment transformers attached to each edge of the graph

9

IDE – Formal Definition

 = ⟨�∗, �, 4, �5%6⟩

Meet-over-valid-paths solution:

��
��5
 = � .⊓"∈#$ % �5%6(&)(⊤5%6)

10

• Formally, IDE is specified by a 4-tuple

• G* is the supergraph

• D is a finite set

• L is the lattice

• M_Env assigns environment transformers to each edge of the supergraph

• Solution is also a meet-over-valid-paths solution

• Very similar to IFDS

• Difference is using M_Env instead of M_F, and initializing with Top_Env

instead of emptyset

10

IDE – Pointwise Representation

• Edges are labelled with micro-functions in 4 → 4

: � ;) � �<,= ⊤ ⊓ 7⊓>?∈��>?,=7� ; 3@ 88

0 x y z

�<,=

�=,=�<,<

:7� ;8

� ;

11

• IDE has a pointwise representation, similar to the IFDS representation relation

• Like the IFDS bipartite graph, but each edge is labelled with a micro-

function

• E.g., g_0, g_1, g_2

• Idea is that we can take the lattice value an element d is mapped to, and get the

“output lattice value”

• By doing this over all elements d and taking the meet, we can reconstruct

the updated environment

11

IDE – Labelled Exploded Supergraph

• Like IFDS exploded supergraph

• But each edge is labelled with a micro-function

⟨�#, �3A�� ⟩

 = �∗, �, 4, �5%6 is encoded by ⟨�$
#, �3A�� $⟩

12

• Again, we can stitch the pointwise representations together

• Form an exploded supergraph, where each edge is labelled by a micro-

function

• This is a representation of an IDE problem instance

• To solve, require two phases

• Run the graph reachability algorithm to determine which nodes are

reachable

• This also composes the micro-functions along the path

• Then apply the composed micro-function to the dataflow fact

• Assumes micro-function composition and application can be done in

constant time

12

IFDS to IDE Transformation

13

20:00 (+8:00) mark

13

Transformation Overview

Transform IFDS problem instance to IDE problem instance

B: �# → ⟨�#, �3A�� ⟩

Assign micro-functions to edges of the exploded supergraph

14

• Our goal is to transform an IFDS problem to an IDE problem

• We are given some existing IFDS analysis

• The transformation works on the exploded supergraph and adds labels

• Does not change the exploded supergraph (= program being analyzed +

original analysis)

• Idea is to use the micro-functions to encode the event handler operations (register,

emit, invoke)

• IFDS analysis asks “is dataflow fact d present at node n?”

• IDE analysis asks “what lattice value is associated with element d at node n?”

• In this case, what is the state of the event handler?

• If it is “infeasible” we can ignore the result on this path

14

Event Handler State – Model

X

invoke
invoke

15

• For now, assume a single event handler in the program

• An event handler has three states: start (S), registered (R), and emitted (E)

• Transition actions are “register”, “emit”, and “invoke”

• Note that the handler can get “stuck” if it invokes from S or R

• This never happens in a real program execution

• But we model it with the infeasible (X) state for an analysis

• Lattice ordering is for merging results from two branches

• E.g. one branch has “infeasible” and the other branch has “registered”

• We have to be conservative and assume the state after the branch is

“registered”

15

Event Handler State – Micro-functions

• Three basic micro-functions, plus identity

• Most edges are labelled with the identity micro-function

register(C) = C

register(() = 0

register(0) = 0

register(�) = �

emit(C) = C

emit(() = (

emit(0) = �

emit(�) = �

invoke(C) = C

invoke(() = C

invoke(0) = C

invoke(�) = �

�3A�� � �

D�AEF:�D

�GE:

E ;HI�

E3

if edge e registers the handler

if edge e emits an event for the handler

if edge e invokes the handler from the event loop

otherwise
16

• Our analysis requires three basic micro-functions, plus the identity

• These micro-functions correspond to the event handler operations:

register, emit, and invoke

• Most edges are labelled with the identity micro-function

• Register: only update S state to R

• Emit: only update R state to E

• Invoke: update non-E states to X

• EdgeFn: micro-functions correspond to edges that involve an event handler

operation

• As IDE algorithm traverses the exploded supergraph, it composes these micro-

functions along the paths

• Initial state is S

• E.g. invoke(emit(register(S))) = E is OK, but invoke(register(S)) = X is not

• Notice that we can represent each micro-function as a 4-tuple

• Only 8 bits needed to represent 256 functions

16

Multiple Event Handlers

• Define the IDE lattice 4@ � \ → 4
• \ is the set of event handlers in the program

• 4 is the event handler state lattice

• IDE computes environments: � → \ → 4
• For each node and fact 3, we have a map of handlers to states

• Micro-functions: \ → 4 → \ → 4
• Alternate representation: \ → 74 → 48

17

• Now we need to support multiple event handlers

• We use the lattice L’ = H \to L

• H is the set of event handlers in the program

• L is the event handler state lattice we just saw

• Recall: IDE computes an environment D \to L’ at each node n

• Now, for each node n, we have an environment D \to (H \to L)

• For a given dataflow fact at node n, we have a map m : H \to L with states

for each event handler

• So micro-functions are in (H \to L) \to (H \to L) which are hard to represent

• But note that the state of an event handler does not depend on any other

handler

• So we can represent micro-functions in H \to (L \to L)

• We have a map from event handlers to micro-functions in L \to L

• So when EdgeFn assigns micro-functions, it has to pick the micro-function for the

correct event handler

17

Transforming IDE Results

For a result, if any handler is in state X, discard that result

IFDS result: �∗ → �

IDE result: �∗ → � → \ → 4

18

• Idea of transformation: each result d has a map of event handlers to states

• If any event handler has state X, then the result is impossible

• It was computed along some path that did not respect the ordering

constraints of an event handler

• So discard that result

• Formally, we have an “untransformation”

• IFDS result is a map from nodes to elements in D

• IDE result is a map from nodes to environments, where an environment

maps elements of D to event handler maps

• Untransformation returns a map from nodes to elements in D

• For the given node, look it up in the IDE result, and find all elements d

where all handlers are not in state X

18

Theoretical Properties

Soundness

Result computed along concrete execution path

 Result computed by our technique

Precision

Result from our technique ⊆ Result computed by IFDS

Formal statements and proofs in the paper

19

• Transformation is sound

• Consider running the IFDS analysis on a concrete path.

• Consider our technique: transform IFDS to IDE, run it, untransform it.

• Results on the concrete path will be returned by our technique.

• Transformation is precise

• Consider running the IFDS analysis on an entire program.

• Consider our technique: transform IFDS to IDE, run it, untransform it.

• Our results will be a (non-strict) subset of the IFDS results.

19

Conclusion

• Problem: static analysis of event-driven programs does not
respect event handler ordering

• Our approach: transform an existing IFDS problem to an IDE
problem

• IDE problem maintains information about event handler state

• Transformation is sound and precise

• Formal statements and proofs in paper

20

30:00 (+10:00) mark

20

Extra Slides

21

21

IFDS – Representation Relation

Distributive dataflow function  representation relation

� � �(. if) ∈ (∨ + ∈ (

then (∪ {�}

else (∖ {�}

0 x y z

0] � <, < ∪

 <, 3 | 3 ∈ A(∅) ∪

3�, 3� | 3� ∈ A 3� ∧ 3� ∉ A(∅)

01 = <, < ,), � ,),) , +, � , ⟨+, +⟩

• This is the formal definition for the representation relation

• <0,0> is always in the relation and roughly corresponds to the empty set

• <0,d> corresponds to facts “created” or in the “gen set”

• <d_1, d_2> corresponds to inputs-outputs, but there is a “subsumption” to avoid

excess edges

• If the output is already “created” by the empty set, then we don’t care

what its input is

• This condition does not apply for the current example

22

IDE – Lattices

If 4 is a lattice with top element ⊤, the pair 4 × 4 is a lattice:

• Top: ⊤, ⊤

• Meet: ��,)� ⊓ ��,)� = �� ⊓ ��,)� ⊓)�

The map � → 4 is also a lattice:

• Top: B5%6 � �3. ⊤

• Meet: G� ⊓ G� � �3. � ;� 3 ⊓ � ;� 3

• Given a lattice L, we can build up “bigger” lattices, like pairs and maps

• For a pair, the top value is when both elements of the pair are top

• The meet is done pointwise, for each element

• We can extend this to n-tuples

• For a map D to L, it doesn’t matter what D is

• The top value is the map that maps every element to top

• The meet of two maps is done pointwise

• Note that we could interpret the map as a function

• General idea is to do the operations per-element

23

Transforming IDE Results

For a result, if any handler is in state X, discard that result

IFDS result: �∗ → �

IDE result: �∗ → � → \ → 4

“Untransform” function b applied to IDE result 0:

b 0 � � . 3 ∀ℎ ∈ \ . 0 3 ℎ e C }

• Idea of transformation: each result d has a map of event handlers to states

• If any event handler has state X, then the result is impossible

• It was computed along some path that did not respect the ordering

constraints of an event handler

• So discard that result

• Formally, we have an “untransformation”

• IFDS result is a map from nodes to elements in D

• IDE result is a map from nodes to environments, where an environment

maps elements of D to event handler maps

• Untransformation returns a map from nodes to elements in D

• For the given node, look it up in the IDE result, and find all elements d

where all handlers are not in state X

24

Theoretical Results – Soundness

Let
 be an IFDS problem, & � fF:gD:, … , i be a concrete
execution path, and 3 ∈ � a dataflow fact. Then:

3 ∈ �� & ∅ ⟹ 3 ∈ b7��
��57B
 887 8

• The transformation is sound

• Consider an IFDS problem P and a concrete execution path p

• Take the dataflow functions along p, compose them, and apply it to the

empty set

• Will get some result set containing dataflow facts d

• These results will be returned by our transformation

• I.e. transform P to IDE, solve it, untransform it, and then get its

result

25

Theoretical Results – Precision

Let
 be an IFDS problem and ∈ �∗ be any node in the
supergraph. Then:

b ��
��5 B
 ⊆ ��
����7
87 8

• The transformation is precise

• Take an IFDS problem P, and a node n

• On the RHS, we solve the IFDS problem and get some set of results

• On the LHS, we transform to IDE, solve that IDE problem to get results, and

untransform those results

• Then we compare the two results for the given node n

• The LHS will be a subset of the RHS, because we filtered out the infeasible

results

26

