
CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

1

Push-Down Automata for Higher Order Flow Analysis

Motivation
(10 min, running 00:00)

- Warmup, k-CFA example from Dimitrios Vardoulakis’s dissertation:

(left board, behind, draw beforehand)

- If we step through this program by hand

o n1 is 1, n2 is 2, result is 3

- 0CFA control-flow graph

(right board, in front, draw beforehand)

(def app (λ (f e) (f e)))

(def id (λ (x) x))

(let ((n1 (app id 1))

 (n2 (app id 2)))

 (+ n1 n2))

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

2

- 0CFA allocates a single contour

o When we call (app id 1)

 f bound to id, e bound to 1

 When we call (f e), x bound to 1

 Return, so n1, n2 bound to 1

o Then we call (app id 2)

 f bound to id, e bound to 2

 When we call (f e), x bound to 2

 Return, so n1, n2 bound to 2

(left board)

Call/Return Mismatch

- Let’s try to increase precision with 1CFA

o 1CFA allocates a contour for the last call site

o We can differentiate the two calls to app, from sites 2 and 4

o But id is called from site 9, so we cannot distinguish the contexts

(left board)

ENV0 =

 f -> {id}, e -> {1, 2}, x -> {1,2}

 ret_id -> {1,2}, ret_app -> {1,2}

 n1 -> {1, 2}, n2 -> {1, 2}

 result -> {2, 3, 4}

ENV0 =

 n1 -> {1, 2}, n2 -> {1, 2}

 result -> {2, 3, 4}

ENV2 =

 f -> {id}, e -> {1}

 ret_app -> {1,2}

ENV4 =

 f -> {id}, e -> {2}

 ret_app -> {1,2}

ENV9 =

 x -> {1, 2}

 ret_id -> {1,2}

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

3

- 1CFA not good enough, so let’s try 2CFA

o 2CFA allocates a contour for the last 2 call sites

o Now we can differentiate the calls to id: 9,2 and 9,4

o Environment maps:

(left board)

- In this example, 2CFA was good enough

o But given any k, can construct an adversary by eta-expansion

o Also, k > 1 is already intractable (worse than exponential time)

- Real problem: mismatched calls and returns

o Approximate program with finite-state machine

 Cannot “remember” where a call should return to

o Use a more powerful abstraction: pushdown automata

 When calling, push onto stack

 When returning, check top of stack and pop

Performance and the Vicious Cycle

o Imprecision can lead to worse performance

o Imprecision means more spurious control-flow paths

o More control-flow paths means more to analyze

ENV0 =

 n1 -> {1}, n2 -> {2}

 result -> {3}

ENV2 =

 f -> {id}, e -> {1}

 ret_app -> {1,2}

ENV4 =

 f -> {id}, e -> {2}

 ret_app -> {1,2}

ENV9,2 =

 x -> {1}

 ret_id -> {1}

ENV9,4 =

 x -> {2}

 ret_id -> {2}

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

4

CFA2: a Context-Free Approach to Control-Flow Analysis
(20 min, running 10:00)

Vardoulakis and Shivers, ESOP 2010

- CFACFA = CFA2, not 2-CFA

- “Context-Free” language

Concrete Semantics

- Standard recipe for analysis: formalize the concrete semantics

o Continuation-Passing Style

o eval-apply interpreter

Abstract Semantics

- CFA2 is an abstract interpretation of the CPS program

(cover left board)

(right board)

- Reference is a stack ref if it appears at same nesting level as its binder

o Inner lambda and its reference to x can escape

- Possible to come up with a definition for stack/heap references in CPS

- In general, multiple closures may flow to f

o And we might choose different values for the different calls

o But in this case, both references are bound at the same time

o We update the top frame with the value we chose for y

1. Split environment into stack/heap

(λ1(x) (λ2(y) (y (y x))))

Stack ref: y Heap ref: x

2. Use stack for variable binding, return-point info

3. Concrete states -> abstract states

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

5

- Transform concrete states to abstract states

o Transform environment into a stack

o Make the environment finite, allow sets of values

o Update transitions

- Now we have a semantics that accurately describes call/return

matching

Local Semantics

- Abstract state space is infinite due to the stack, so not computable

(right board)

- Map abstract states to local states

o Functions do not return

Summarization

(right board)

- Summarization is a dynamic programming algorithm

- Graph reachability problem

- Example uses nodes, but algorithm uses states (includes heap and top

frame)

4. Abstract states local states

- Keep top stack frame

- Drop rest of stack

5. Summarization

Path edge: entry node -> some node in same procedure

Summary edge: entry node -> exit node

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

6

(reuse left board)

PathEdge SummaryEdge Callers
<1,1>,<1,2> <1,2,8>

No summary found

<8,8>, <8,9> <8,9,12>

No summary found

<12,12>,<12,13>,<12,14> <12,14>

Found Caller<8,9,12>, return to 10

<8,10>,<8,11> <8,11>

Found Caller<1,2,8>, return to 3

<1,3>,<1,4> <1,4,8>

Found Summary<8,11>, return to 5

<1,5>,<1,6>,<1,7>

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

7

Complexity and Evaluation

- Complexity: worse than exponential

o Exploring states,

o Each state has ℎ ∈ ���� = ��	 → �������

o ��	 ∈ ����

o ������� ∈ ��2��

o ���� ∈ ��2��
�

- But seems to be OK in practice

- Evaluation in paper compares 0CFA, 1CFA, and CFA2

o Precision: CFA2 most precise, then 1CFA, then 0CFA

o Efficiency: 1CFA worse, 0CFA and CFA2 about the same

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

8

Pushdown Control-Flow Analysis for Free
(30 min, running 30:00)

Gilray, Lyde, Adams, Might, Van Horn, POPL 2016

(right board, in front)

- Other groups were working on the same problem at the same time

o Based on the AAM approach

o Culminates in this paper

- Quick review of AAM

- Use A-Normal Form as the intermediate representation

o Like CPS, avoids nested calls

o Uses let-bindings for intermediate expressions

o Order of operations explicit from let-bindings

- PDCFA (Pushdown Control-Flow Analysis)

o Complex implementation, ��������

- AAC (Abstracting Abstract Control)

o Simple implementation, ����������

- P4F (this paper)

o Simple implementation, �������

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

9

Concrete Semantics

(left board, behind)

- We always generate a fresh address

- Two kinds of transitions: calls and returns

- Call transition:

o Push new stack frame so we know how to return

o Evaluate function and its arguments

o Bind arguments to formals and update store/env

- Return transition:

o Pop the stack

o Restore the old environment

o Bind result to the variable in the frame

o Transfer control to expression in the frame

 � ∈ Σ = Exp × ��� × !�	� × "��! [states]

# ∈ ��� = Var → $%%	 [environments]

& ∈ !�	� = $%%	 → ��� [stores]

'�� ∈ ��� = Lam × ��� [closures]

(∈ "��! =)	�*�∗ [stacks]

, ∈)	�*� = Var × Exp × ��� [stack frames]

� ∈ $%%	 infinite set [addresses]

let id = (λ (z) z)

let x = (id v)

let y = ...

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

10

Abstract Semantics

- Make domains finite so we can compute the analysis

o Unboundedness: store (due to addresses) and stacks

(right board, in front)

- Value store: map finite set of addresses to set of abstract closures

- Stack: thread through store as linked list, represent continuation with

address

o Continuation is a (top) frame and an address to the next

continuation (rest of stack)

o We can merge frames, and we might have a cycle so it’s finite

- How do we pick addresses from a finite set? Describe it using an

abstract allocator

�̃ ∈ Σ. = Exp × ���/ × !�	�0 × " !�	�0 × $%%	0 [states]

#1 ∈ ���/ = Var → $%%	0 [environments]
&1 ∈ !�	�0 = $%%	0 → 3����/ � [val. stores]
'��/ ∈ ���/ = Lam × ���/ [closures]
&45 ∈ " !�	�0 = $%%	0 → 3�"��!0 � [cont. stores]

(̃ ∈ "��!0 =)	�*�0 × $%%	0 [continuations]
,. ∈)	�*�0 = Var × Exp × ���/ [stack frames]
�1, �45 ∈ $%%	0 finite set [addresses]

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

11

(left board)

- In 0-CFA, allocator just uses the variable as its address

o Corresponds to a single global environment

- Also need an abstract continuation allocator

(left board)

- Don’t have &45 or �45 because we need the allocator to give us an

address

- Example: use the target expression (where function returns to) as

abstract address

o If we used CPS, the 0CFA store allocator would give us this

����'0 ∶ Var × Σ. → $%%	0

Var – variable we want an address for

Σ. – current state

E.g.: ����'80 �9, �̃� = 9

����'40 ∶ Σ. × Exp × ���/ × !�	�0 → $%%	0

Σ. – current state

Exp – target expression

���/ – target environment

 !�	�0 – target store

E.g.: ����'48��̃, �:, #1:, &1 :� = �:

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

12

Pushdown 4 Free

(left board)

(use � instead of c)

- We call a procedure, entering at s0 and exiting at s5

o We enter with some amount of precision

o E.g. 2 different call sites, so 2 different entry configurations

- We want the continuations to have at least the same amount of

precision

o Continuation allocator should be as precise as the value allocator

- Target environment is determined by its addresses, which are

determined by the value allocator

(right board, bottom)

- Abstract address is the target expression and target env

- No matter what value allocator you choose, this continuation allocator

will give you a precise address

����'4 ;<=��̃, �:, #1:, &1 :� = ��:, #:> �

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

13

Initial values:

id -> ((λ (x) 0x), #?5)

#1, �45

����'@0 �9, ��, #1, &1, &45, �45�� = �9, ��

Example

(move right board to left)

(right board, behind)

- 1-CFA allocator: use the variable and call site as address

- Simple continuation allocator: use target address

- First step: apply id to #t, so we enter the body of id and update our

stores

o Note that in P4F we also use the target environment

&1 - store (– cont. &45 – cont. store

(imprecise)

&4 ;<=A – cont. store

(precise)
�9, �@�
↦ {#!}

(@
= ��F, ��, #1�, �45�

�8 ↦ {(@} ��8, #?5[9 ↦ �9, �@�]� ↦ {(@}

- Now we return from e0 to e2 and bind y to the result and update stores

�F, �8�
↦ {#!}

- Second call, but this time we apply id to #f

o Imprecise return address is e0, precise is (e0, \rho …)

�9, ���
↦ {#�}

(�
= ��I, �J, #1[F ↦ �F, �8�]�, �45�

�8
↦ {(@, (�}

��8, #?5[9 ↦ �9, �@�]� ↦ {(@}
��8, #?5[9 ↦ �9, ���]� ↦ {(�}

- Return from e0

�I, �8�
↦ {#�}

 �8 ↦ {(@, (�} ��8, #?5[9 ↦ �9, �@�]� ↦ {(@}
��8, #?5[9 ↦ �9, ���]� ↦ {(�}

- Both precise and imprecise analysis correctly bind z

- But imprecise analysis sees e0 bound to two continuations, so we also

return to e2

o (y, e0) gets bound to #t and #f

… 1(let ([y (id #t)])

 2(let ([z (id #f)])

 3…)

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

14

Abstracting Definitional Interpreters
(30 min, running 1:00:00)

Darais, Labich, Nguyễn, Van Horn, ICFP 2017

- Now for something that seems unrelated, but based on AAM

- Idea: instead of applying abstract interpretation to an abstract

machine, apply abstract interpretation to definitional interpreter

o High level, reusable, extensible

o Inherits the “pushdown control flow” property from the

metalanguage

- “Definitional interpreters” and “inheritance” come from Reynolds

1972: Definitional Papers for Higher-order Programming Languages

 (left board)

- Defined language: untyped lambda calculus

- Defining language (or metalanguage): Racket-like language

- If the metalanguage is call-by-value, so is the defined language

- If the metalanguage is call-by-name, so is the defined language

- Defined language “inherits” evaluation strategy from metalanguage

- Interpreter uses monads, but why?

- Try writing an arithmetic evaluator that handles errors

o Use the Maybe monad, which is called Option or Optional

(def (eval exp env)

 (match exp

 [(vbl v) (lookup env v)]

 [(app e0 e1) ((eval e0 env) (eval e1 env))]

 [(lam x e) (λ (v) (eval e (extend env x v)))]))

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

15

(right board)

- A lot of “noise” that obscures the actual important computation

- Library that provided Maybe also provides operations for chaining

values together

(right board)

- bind takes a Maybe value and a function

o If the value is Nothing, “short circuit” and return Nothing

o Otherwise apply function to the unwrapped value

o Note that f must return a Maybe value of its own

- Return takes a value and wraps it up as a Maybe value

- There are also 3 “monad laws” that return and bind must obey

- Now let’s rewrite the add function

Maybe ::= Just n | Nothing

(define (add mx my)

 (match x

 [(Nothing) (Nothing)]

 [(Just x) (match my

 [(Nothing) (Nothing)]

 [(Just y) (Just (+ x y))])]))

(define (return v)

 (Just v))

(define (bind mv f)

 (match mv

 [(Nothing) (Nothing)]

 [(Just v) (f v)]))

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

16

(left board)

- We have a Maybe value mx, which we “unwrap” and bind to x

o We unwrap my and bind to y

o Then we can add x+y and “return”, which wraps the result

- If mx or my are Nothing, then we skip all the computation and return

Nothing

- Problem: still kind of ugly, so we use do-notation

o Fun fact: now looks like imperative programming

- Can switch to a “Nondeterminism” monad (with its implementation of

‘bind’ and ‘return’) that represents set of values

o Now ‘add’ can add sets of values and return a set of all possible

sums

- Phil Wadler showed how to write an interpreter, where you could

“plug in” different monads to get different effects

- Follow-up work showed how you could use “monad transformers” to

compose monads and get different combinations of effects

- Now let’s go back to the interpreter (simplified)

o State monad for store, Reader monad for environment

(define (add mx my)

 (bind mx (λ (x)

 (bind my (λ (y)

 (return (+ x y)))))))

(define (add mx my)

 (do x <- mx

 y <- my

 (return (+ x y)))

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

17

(right board)

- Like AAM, we have an environment (variable -> address) and a store

(address -> value)

- Some interesting points

o Written in “open recursive style” where it calls the argument ev’

 Need to apply Y combinator to get recursion

 Purpose: intercept recursive calls

o Underlined parts are incomplete, subject to the component we

“plug in”

 Bind/return are for the underlying monad

 Environment: ask-env to retrieve, local-env to restore

 Store: find to dereference, ext to update, alloc to allocate

(define ((ev ev′) e) ; env=var->addr store=addr->val

 (match e

 [(num n) (return n)]

 [(vbl x) (do ρ <- ask-env

 (find (ρ x)))]

 [(lam x e0) (do ρ <- ask-env

 (return (cons (lam x e0) ρ)))]

 [(app e0 e1) (do (cons (lam x e2) ρ) <- (ev′ e0)

 v1 <- (ev′ e1)

 a <- (alloc x)

 (ext a v1)

 (local-env (ρ x a) (ev′ e2)))]))

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

18

Concrete Interpreter

(left board)

- Need implementations for all the underlined functions

- Concrete ‘alloc’ might be implemented like this

o Returns the size of the store

o So every time we add an address to the store, we’ll get a fresh

address

Abstract Interpreter

(left board)

- Now to abstract our interpreter

- Abstract allocator returns an address from a finite set

o E.g. 0CFA uses the name of the variable as its address

- If the interpreter handled values, we would need to abstract values

o E.g. concrete numbers represented by their sign

o If we have branching, need to use nondeterminism to take both

branches

- Store: map addresses to set of values, update is join, dereference is

nondeterministic

(define (alloc x) (do σ <- get-store

 (return (size σ))))

(define (alloc x) (return x))

CS 7480 – Program Analysis Seminar Ming-Ho Yee

November 10, 2017 mhyee@ccs.neu.edu

19

Termination

(left board)

- The interpreter and abstraction were easier

- But guaranteeing termination is the trickiest bit; details in paper

o Cache visited configurations

o Cache results

o Compute least fixed point of the cache

- Now we have a terminating abstract interpreter

- Skipped one step from AAM: no store-allocated continuations

o No continuations

- Stack is implicit, modeled by the metalanguage (Racket) and not the

interpreter

o Racket is precise and does call/return matching

o Therefore, abstract interpreter is also precise

AAM – transitions over finite state space

ADI – caching fixed-point algorithm

