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Traditional JIT (just-in-time) compilers are method-based: they compile “hot” (i.e. frequently
executed) methods to native code. An alternative is trace-based or tracing JITs, where the
compilation unit is a (hot) sequence of instructions. Typically, such sequences of instructions
correspond to loops, where programs spend most of their execution time.

Where did the idea of tracing come from? What was appealing about it? How was tracing
adapted for JITs and dynamic languages? What happened to Mozilla’s TraceMonkey, which
used to be part of Firefox? Do any JITs today use tracing?

This document is based on my lecture notes for the History of Programming Languages
course1, as well as the discussion summaries recorded by Ben Greenman and Gabriel Scherer.
The most recent version of this document can be found in the course repository2.

In the presentation, I covered five papers, whose dependencies are summarized in Figure 1:

1. Bala, Duesterwald, and Banerjia. Dynamo: A Transparent Dynamic Optimization
System. PLDI 2000. [2]

The first tracing paper was published in 2000 by Bala et al. Dynamo was not a just-
in-time (JIT) compiler, but was certainly influenced by JITs, along with dynamic
translation and profile-guided optimization.

2. Gal and Franz. Incremental Dynamic Compilation with Trace Trees. UC Irvine
Technical Report 2006. [10]

In this technical report, Gal and Franz implemented tracing in a JIT compiler for Java.
They also introduced the trace tree intermediate representation.

3. Gal et al. Trace-based Just-in-Time Type Specialization for Dynamic Languages. PLDI
2009. [12]

In 2009, Gal et al. implemented TraceMonkey, a tracing JIT for JavaScript. TraceMon-
key shipped as part of Firefox for several years.

4. Bolz, Cuni, Fijałkowski, and Rigo. Tracing the Meta-Level: PyPy’s Tracing JIT
Compiler. ICOOOLPS 2009. [7]

Also in 2009, Bolz et al. implemented “meta-tracing” for PyPy [5], where they trace an
interpreter instead of the user program. Their main inspiration was DynamoRIO [22],
a project that adapted Dynamo for interpreters.

5. Ardö, Bolz, and Fijałkowski. Loop-Aware Optimizations in PyPy’s Tracing JIT.
DLS 2012. [1]

In 2012, Ardö et al. adapted an optimization technique from LuaJIT [16], a tracing
JIT for Lua, and implemented it in PyPy.

1http://www.ccs.neu.edu/home/matthias/7480-s17/
2https://github.com/nuprl/hopl-s2017/tree/master/tracing-jit
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Figure 1: Dependencies of the papers discussed in these notes.
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1 Dynamo

Dynamo: A Transparent Dynamic Optimization System

Bala, Duesterwald, and Banerjia. PLDI 2000. [2]

“Premature optimization is the root of all evil.”
— Donald Knuth [13, p. 268]

This line is often quoted, but it is important to remember the context: a programmer should
not waste time optimizing the “small inefficiencies.” Instead, a good programmer will carefully
identify the critical portions of the program and spend the optimization effort there. This is
exactly what Dynamo does:

1. Interpret and monitor machine code to identify hot traces, i.e. critical portions of the
program that are most likely loop bodies.

X: Does the programmer need to write annotations?

MHY: No.

X: So if I have a loop and call out to another function—things you can do
with λ spaghetti code . . . ?

MHY: Yes. Write a program and compile it normally, and just give it to
Dynamo. You don’t need to do anything special.

2. Record the trace’s sequence of instructions. A trace is identified by the address of its
first instruction.

3. Optimize the trace and generate a fragment of more efficient machine code. Store the
fragment in a cache (or array of bytes) so it can be executed later.

X: What exactly is a fragment?

MHY: More efficient machine code, fewer jumps.

4. During interpretation of the machine code, if a known trace is reached, execute the
corresponding fragment on hardware.

Let us walk through Figure 2 as an example, while providing some more detail. The
sample program contains branching, a function call and return, and a loop. Suppose the
sequence of instructions ACDGHJE is executed before looping. When the program is laid out
in memory and executed, control must jump over the B and I instructions. Furthermore, the
two functions may not be near each other.

When Dynamo executes this program, its first step is to identify hot traces. Dynamo
uses the Most Recently Executed Tail heuristic, which says that if an instruction is hot, it
is very likely that the following sequence of instructions is also hot. Dynamo maintains a
counter at start-of-trace points, which are targets of backward branches (likely to be loop
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Figure 2: An example program. (a) depicts a control flow graph of two functions, (b) depicts a
possible layout of the two functions, and (c) depicts a trace of the functions. [2, Fig. 3]

headers) and targets of trace exits. If the counter exceeds a certain threshold, Dynamo will
record instructions until reaching an end-of-trace instruction, which is a backward branch or
a target that corresponds to a known trace.

Once a trace is recorded, Dynamo transforms and optimizes it. Unconditional direct
branches are removed, functions are inlined, and branches are rewritten so that the fast
path is on the trace. The result is a single-entry, multi-exit sequence of instructions with no
internal merge points. Figure 2 (c) shows a rewritten trace. The entire fast path is in a linear
sequence, but branches to the slow path go to the exit stubs, and then return control to the
Dynamo interpreter. The optimized trace is recompiled as a fragment, i.e. more efficient
machine code, and stored in a code cache.

Whenever the interpreter executes a branch instruction, it checks if a fragment corre-
sponding to the branch target exists in the cache. If so, Dynamo will context switch and
execute the fragment on hardware. When the fragment finishes executing, control returns to
the interpreter. Dynamo will always try to patch new fragments to jump directly to existing
fragments, to avoid expensive context switches.

Why are traces so nice? Traces are linear sequences of code that can cross function
boundaries, so they improve cache locality. Branches are rewritten to minimize the branch
misprediction penalty. Furthermore, a trace is much simpler and faster to optimize, since
there are no internal control flow merge points. Typical optimizations include redundancy
removal, copy propagation, and constant propagation.

To test their implementation, the authors ran Dynamo on the SPEC CPU1995 integer
benchmarks [21] as well as an incremental constraint solver called deltablue [20]. They
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Figure 3: Dynamo performance on native binaries. The first three bars correspond to native
executions, while the next three correspond to code run with Dynamo. [2, Fig. 8]

compiled the benchmarks with different levels of optimization (+O2 for the first level, +O4 for
a higher level, and +O4 +P for a higher level with profile-guided optimization), and ran with
and without Dynamo. The results are presented in Figure 3. The main takeaway is that +O2

with Dynamo was slightly better than +O4 without Dynamo.

X: The differences are not very big. Was this before the paper [9] that showed
-O3 optimizations were “within the noise”?

Y: First, this is a bad graph. The y-axis is in seconds. Nowadays, you would see
normalized graphs.

X: But still, the difference is not that big.

Y: It’s about 20%. The noise papers were more like 3%.

X: Did they talk about how Dynamo is no better than the state of the art?
Native+PGO is better than Dynamo+PGO.

Y: Nobody was using PGO in practice.

MHY: The paper argued that nobody used +O4 either, because it was too slow
and you lost all your debugging symbols.

Y: Does their system maintain debugging info?

MHY: OK, that wasn’t the best example.

X: Did anyone ever look at tracing on the λ level, in terms of the number of
β-reductions? Could see if this is generally a good idea.

MHY: No, not to my knowledge.
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1:	code;
2:	do	{
				if	(condition)	{

3:					code;
				}	else	{

4:					code;
				}

5:	}	while	(condition);
6:	code;

Figure 4: A sample program and control flow graph. [10, Fig. 1]

2 Trace Trees

Incremental Dynamic Code Generation with Trace Trees

Gal and Franz. UC Irvine TR 2006. [10]

We now move from tracing to tracing JITs, specifically a tracing JIT for Java. This technical
report was never published; however, an earlier version of this work was published at a
workshop [11].

X: Did Gal go to Mozilla?

MHY: Yes, he became CTO but left to do a startup.

Traditionally, JITs are method-based. They construct a control flow graph of the entire
program, (e.g. Figure 4) and then generate native code for methods. In this work, the authors
build a JIT around tracing, which can be done on-the-fly. This requires significantly less
overhead, so such a JIT can be used on embedded devices.

The basic technique is similar to Dynamo, but the input is JVM bytecode instead of
machine code:

1. Identify anchor nodes (e.g. targets of backward branches) and count the number of
times they are hit.

2. If the hit count of an anchor node exceeds a certain threshold, start recording instructions.
Stop recording when a cycle is found.

3. Compile the recorded trace to native code.
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Figure 5: Two trace trees that correspond to the program in Figure 4. s represents the sites of
possible side exits. The tree on the right is an extension of the tree on the right, formed when
execution from block 2 goes to block 4 instead of block 3. [10, Fig. 3]

4. If known native code exists for some trace, execute it instead of interpreting the
bytecode.

X: Wouldn’t OS developers complain about this behaviour?

Y: This was 2006.

Z: Racket does these things today. Let the OS developers complain.

5. Extend existing trace trees with new branches.

The last step is slightly different from Dynamo. In Dynamo, if a fragment was executing
on hardware and a branch caused a side exit, the system starts recording a new trace and
then compiles a new fragment. This might result in a tree-like structure, but Gal and Franz
explicitly represent this structure as a trace tree. Note that traces within a tree can share a
common prefix, but must always duplicate suffixes. This shared code structure can then be
used to improve code generation.

As an example, consider tracing the execution of the program in Figure 4. Since block
2 is the header of a loop, it becomes the anchor node. Suppose we execute the following
sequence of blocks: 235. The resulting trace is displayed in Figure 5, left. Now, suppose the
other path is taken within the loop, so the trace is 245. During execution, the side exit at
block 2 is taken, and then the trace 45 is recorded as a new branch, extending the current
tree. The result is Figure 5, right.
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Figure 6: A nested loop and trace tree. Block 2 is selected as the anchor. Note the duplication of
the outer loop in the trace tree [10, Fig. 4]

X: What about program size?

Y: It could be exponential. Do they do count duplicates in a tree? Do they bound
the maximum width of the tree?

MHY: No, they only keep track of the height of the tree. If the tree is too tall,
they throw the trace away.

This becomes a significant issue with nested loops. Usually, the inner loop’s header
becomes the anchor, since it is hit more than the outer loop’s header. When recording the
trace, the loop is turned inside out, and the outer loop becomes part of the inner loop. This
simplifies the loop structure at the expense of code duplication.

Figure 6 shows how a nested loop might be recorded. In this example, the inner loop
header, block 2, is selected as the anchor. At first, only the inner loop is recorded: 235. On
the next iteration, control goes around the outer loop twice, before returning to the inner
loop header: 23571671. But later, a similar path is taken, but with the other branch in the
inner loop: 24571671. In this case, the outer loop is duplicated in the trace tree. This issue
is not solved until we discuss the next paper.

The authors implemented a prototype in JamVM [14], a Java JIT for embedded devices,
and ran the Java Grande benchmark suite [15]. Their performance is not quite as good as
HotSpot, but they achieve this with significantly less effort and significantly less overhead.
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Figure 7: Performance of code compiled with different JVM implementations. The baseline is
HotSpot using pure interpretation. [10, Fig. 8]

Specifically, using pure interpretation as the baseline, HotSpot achieves a 10x speedup
while their tracing JIT is only 7x faster (Figure 7). However, their code generation is 350x
faster than HotSpot (Figure 8 top), they generate 30x less code (Figure 8 middle), and they
use 7x less memory (Figure 8 bottom). The takeaway is that it is much easier to construct
and maintain a trace tree than a control flow graph.

9



History of Programming Languages

Tracing JITs for Dynamic Languges
February 17 2017

Ming-Ho Yee

sp
ee

d
u

p
 (

fa
ct

o
r)

100

 200

 300

 400

 500

 600

 700

 800

m
ea

n

S
p

ar
se

M
at

m
u

lt

S
O

R

F
F

T

C
ry

p
t

H
ea

p
S

o
rt

L
U

F
ac

t

S
er

ie
s*

0

JamVM+TTC

JVM Hotspot 1.5.0_06−64

5,000

 15,000

 20,000

 25,000

 30,000

 35,000

m
ea

n

S
p

ar
se

M
at

m
u

lt

S
O

R

F
F

T

C
ry

p
t

H
ea

p
S

o
rt

L
U

F
ac

t

S
er

ie
s*

co
d

e 
g

en
er

at
ed

 (
b

y
te

s)

0

 10,000

JamVM+TTC

JVM Hotspot 1.5.0_06−64

20,000

 60,000

 80,000

 100,000

 120,000

 140,000

 160,000

m
ea

n

S
p

ar
se

M
at

m
u

lt

S
O

R

F
F

T

C
ry

p
t

H
ea

p
S

o
rt

L
U

F
ac

t

S
er

ie
s*

ag
g

re
g

at
e 

m
em

o
ry

 u
se

 (
b

y
te

s)

0

 40,000

Figure 8: Compilation time [10, Fig. 9], generated code size [10, Fig. 10], and memory usage. The
comparison is between HotSpot and their JamVM prototype. [10, Fig. 11]
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3 TraceMonkey

Trace-based Just-in-Time Type Specialization for Dynamic Languages

Gal et al. PLDI 2009. [12]

In 2009, Gal, Franz, and many other authors adapt their tracing approach for a dynamic
language, JavaScript. Eich, the creator of JavaScript, was a co-author.

X: What do you mean by dynamic? Java has reflection and objects created at
run time, and it’s common in real world code. How is JavaScript different?

MHY: In this context, “dynamic” refers to the lack of static type information.
The previous work did not discuss reflection in Java.

Y: Everyone knows reflection is hard to handle. See Wand’s The Theory of Fexprs
is Trivial [23]. It would be interesting to know the minimal conditions for a trivial
theory.

Z: The Fexprs paper just uses syntactic equality. The “theory” is contextual
equivalence. Given terms M1 and M2, one context that distinguishes them is
a context that diverges if its argument is α-equivalent to M1. So contextual
equivalence is trivial because it’s only α-equivalence.

The assumption is that hot loops (traces) are mostly type stable, so the compiler can
generate code that is specialized to the types. Each compiled trace corresponds to a single
path, with specific variables mapped to types. They use the same trace tree approach as
before, but now each anchor node has a type map. In other words, a trace is identified by
the address of its first instruction as well as the type map. In a sense, the type map acts as a
“function signature” of a trace.

X: What do types mean here?

MHY: Things like strings and numbers that can be unboxed and then optimized.
JavaScript doesn’t actually have integers; they’re boxed and represented as floats.
If you can unbox them and use actual integers, that’s a huge performance win.

Y: What’s the type of the type map?

MHY: Variables to types.

Again, extending traces is similar to before. However, the main difference is what is
considered a cycle. In TraceMonkey, a loop is only “closed” if execution returns to the
loop header and the types of the variables match the type map upon entry. If this is true,
the loop is considered type-stable. Otherwise, the loop is type-unstable: it is treated as
a single iteration with a side exit. A new trace is recorded with the new types, and the
hope is that eventually, a type-stable loop is achieved. (In many cases, a loop will initially
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Figure 9: Linking two traces. On the left, Trace 1 is a closed loop, while Trace 2 cannot be closed,
but can be linked to the beginning of Trace 1. On the right, neither loop is closed, but both can be
linked to the other. [12, Fig. 6]

be type-unstable because some variables are uninitialized. Then, in subsequent iterations,
variables are initialized and the loop becomes type-stable.)

X: In practice, this happens all the time in generic code.

Y: You mean, ad-hoc polymorphic code.

Z: This is on-the-fly monomorphization. It’s just abstract interpretation [8]. In
honour of my friend Patrick [Cousot], I’m going to say this twice a week for the
rest of the semester.

X: Was this in SpiderMonkey? Which of the three compilation tiers was it in?

MHY: Yes, it was in SpiderMonkey, but I don’t know which tier.

TraceMonkey will also try to link traces together to avoid side exits. Figure 9 shows an
example of linking. On the left, Trace 1 is a type-stable loop, since the variables have type
Number at the beginning and at the end of the iteration. Trace 2 is type-unstable, because
the variables start with type Boolean, but finish as type Number. However, Trace 2 can then
be linked to Trace 1. On the right, neither trace is type-stable, but both can be linked to the
other.

If we recall the previous paper, they turned nested loops inside out. This simplified the
implementation, since a nested loop is treated as a simple loop. However, the outer loop
often gets duplicated. If we assume that loops are nested at a depth of k, and that each loop
has n paths, then the number of traces will be O(nk).
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Figure 10: Nested trace trees. t1 is the outer tree (LR in the algorithm) and calls t2, the inner
tree (LO in the algorithm). [12, Fig. 7]

In TraceMonkey, each loop is represented by its own trace tree. The inner and outer loops
are treated as separate traces, and TraceMonkey keeps track of which is the inner loop and
which is the outer loop. Then, TraceMonkey simply makes the outer loop call the inner loop,
as if it were a function. This is described in the following algorithm:

• Start tracing from loop LR’s header.

• If there is a loop exit, stop the trace.

• If a different loop header LO is reached:

– LO must be an inner loop of LR, since we never exited LR.

– If LO has a type-matching compiled trace tree, call the trace tree. If the call
succeeds, record it in the trace so future executions can call the inner trace.

– Otherwise, abort the trace of LR and start recording LO. In the next iteration,
LR will be recorded, and can then call LO’s compiled trace.

Figure 10 is an example of a nested loop, where the outer loop t1 calls the inner loop t2.
If we assume that loops are nested at a depth of k and each loop has m different type maps,
then the number of traces will be O(mk). Since loops are mostly type-stable, we assume
m ≈ 1.

To evaluate TraceMonkey, the authors ran the SunSpider benchmark suite [24] and
compared with SpiderMonkey (the original JavaScript implementation in Firefox), SquirrelFish
Extreme (the JavaScript implementation in Safari), and V8 (the JavaScript implementation in
Chrome). Figure 11 summarizes the results. TraceMonkey was the fastest on 9 out of the 26
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Figure 11: Performance of TraceMonkey, compared to SquirrelFish Extreme and V8. The baseline
is SpiderMonkey. [12, Fig. 10]

benchmarks, and performed best on benchmarks that involved integer and bitwise operations.
As mentioned before, this is because JavaScript integers are boxed and represented as floats,
but TraceMonkey is able to generate specialized code.

However, TraceMonkey performed poorly with regular expressions, recursion, eval, and
code that called C functions. Unlike most JavaScript engines, TraceMonkey does not have
a special implementation for regular expressions. Furthermore, TraceMonkey has difficulty
tracing recursion, and cannot trace eval or C functions. In addition to these shortcomings,
TraceMonkey had an extremely high overhead for tracing. The authors conducted some
experiments and estimated that recording and compiling traces incurred a 200x slowdown.

X: Note that these benchmarks have nothing at all to do with web programming.
We have bitwise operations, crypto, date formatting, ray tracing, and silly numeric
programs from the 1960s that have been ported from other systems. These are
not representative of real web code.

MHY: There was a paper in 2011 by Richards, Gal, Eich, and Vitek [19], on
finding more representative JavaScript benchmarks.

X: They found that tracing JITs did not work well on real web code. The
hypothesis is that there isn’t enough stability in the code.

Y: If you find a paper like this while doing your readings, please tell us! Dead
ends in research are very common and interesting, but rarely mentioned. The
important thing is to ask, is this a real dead end, or can we take a new approach?
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Eventually, TraceMonkey was replaced by JägerMonkey, a method-based JIT. Tracing
had incredibly high overhead, and transitioning between the interpreted code and compiled
code was very expensive. It seems the original plan was for JägerMonkey to trace, with
a fallback to method-based compilation, but it is not clear if this was ever implemented.
Eventually, other techniques for type inference improved significantly, and TraceMonkey
was completely removed from Firefox. Today, Firefox’s JavaScript implementation is called
IonMonkey.

X: Note that tracing is not inherently bad. It just didn’t work very well for
JavaScript.

MHY: It seems to be much more successful with PyPy and LuaJIT.

LuaJIT [16] seems to be quite successful, but there are no publications on it. The
maintainer, Mike Pall, has open-sourced all his code, but he prefers to spend his time
developing LuaJIT instead of writing papers.

X: The Lua community is. . . different. They don’t cultivate papers. But it’s a
small language. Anyone can improve it, and they do.

Y: Kind of like Scheme before R4.

X: Are you an old man?

Y: What’s that? Speak up.
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4 PyPy

Tracing the Meta-Level: PyPy’s Tracing JIT Compiler

Bolz, Cuni, Fijałkowski, and Rigo. ICOOOLPS 2009. [7]

Around the same time as TraceMonkey, the PyPy project also explored tracing to improve
performance. PyPy [5] is a toolchain for implementing dynamic languages in RPython, a
subset of Python that can easily be compiled. The dynamic language implementer can take
advantage of the high-level features of RPython, without worrying about low-level details
such as memory management, object layout, or threading models.

X: What is the relation between PyPy and Python?

MHY: The interpreter is written in RPython, a subset of Python. The original
goal was to implement Python in RPython, hence PyPy. But now it’s general
framework for implementing dynamic languages.

Y: Pycket [4] is implemented in PyPy, basically implementing the CEK machine
in RPython. They got extremely good performance for the subset of the language
they implemented.

The authors of PyPy wanted to improve the performance of all interpreters implemented
with their toolchain. Thus, the idea is to trace the interpreter, rather than the user program.
In this sense, the main inspiration comes from DynamoRIO [22], which was a project that
applied Dynamo’s tracing technique to interpreters.

Because this work involves two interpreters, the terminology can be a little confusing.
The PyPy authors use language interpreter to refer to the interpreter written by the language
implementer (which executes user programs). On the other hand, the tracing interpreter is
part of PyPy, and it traces the language interpreter.

Figure 12 shows a simple bytecode interpreter implemented in RPython. The majority
of the interpret method is the bytecode dispatch loop. On line 5, it fetches and decodes
the next instruction. On line 6, it increments the program counter, pc. Then it executes the
instruction.

The language has an accumulator register a, 256 general-purpose registers, and six
instructions. JUMP_IF_A decodes the target and jumps to it if a is non-zero. MOV_A_R

decodes the destination register n and moves the contents of a to n. MOV_R_A moves the
contents of register n to the accumulator. ADD_R_TO_A adds the value of register n to the
accumulator. DECR_A decrements the accumulator by 1. Finally, RETURN_A returns the value
of the accumulator.

Figure 13 is a bytecode program that computes the square of the accumulator. The
precise details of the program are not necessary for the discussion, but note that lines 6 to 16
constitute the hot loop of the program.
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1 def interpret(bytecode , a):

2 regs = [0] * 256

3 pc = 0

4 while True:

5 opcode = ord(bytecode[pc])

6 pc += 1

7 if opcode == JUMP_IF_A:

8 target = ord(bytecode[pc])

9 pc += 1

10 if a:

11 pc = target

12 elif opcode == MOV_A_R:

13 n = ord(bytecode[pc])

14 pc += 1

15 regs[n] = a

16 elif opcode == MOV_R_A:

17 n = ord(bytecode[pc])

18 pc += 1

19 a = regs[n]

20 elif opcode == ADD_R_TO_A:

21 n = ord(bytecode[pc])

22 pc += 1

23 a += regs[n]

24 elif opcode == DECR_A:

25 a -= 1

26 elif opcode == RETURN_A:

27 return a

Figure 12: A simple bytecode interpreter written in RPython. The bytecode consists of six
instructions, which access an accumulator register a and 256 general-purpose registers. [7, Fig. 2]

1 # compute the square of the accumulator

2

3 MOV_A_R 0 # i = a

4 MOV_A_R 1 # copy of a

5

6 # 4:

7 MOV_R_A 0 # i--

8 DECR_A

9 MOV_A_R 0

10

11 MOV_R_A 2 # res += a

12 ADD_R_TO_A 1

13 MOV_A_R 2

14

15 MOV_R_A 0 # if i != 0: goto 4

16 JUMP_IF_A 4

17

18 MOV_R_A 2 # return res

19 RETURN_A

Figure 13: Example bytecode program that computes the square of the accumulator. [7, Fig. 3]
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Naïvely tracing the interpreter is not enough, since a trace of the dispatch loop corresponds
to executing a single bytecode instruction. This is unhelpful, since executing a different
instruction requires a new trace. We would like to “unroll” the dispatch loop so that it
corresponds to a loop in the user program. Such a loop occurs if the program counter of the
language interpreter takes on a previous value. In other words, a cycle is detected if a trace
returns to the same position in the language interpreter, with the same interpreter program
counter.

The language implementer must provide hints to PyPy, to indicate which variables
represent the program counter and when backward jumps can occur. In Figure 12, the
program counter is represented by the pc and bytecode variables, and backward jumps can
occur at line 11.

X: This seems to work nicely for loops, but what about recursion?

Y: There are old techniques for turning programs into loops.

Z: See the Pycket paper [4].

However, this approach is still not enough. Consider the first instruction in the user
program’s loop, line 7 of Figure 13. Tracing the language interpreter’s execution of only that
instruction gives us

# MOV_R_A 0

opcode = ord(bytecode[pc])

pc += 1

guard opcode == MOV_R_A

n = ord(bytecode[pc])

pc += 1

a = regs[n]

Most of these instructions simply manipulate the state of the language interpreter, and only
the last instruction represents the behaviour of the user program. However, note that pc and
bytecode have some fixed values—they were checked before entering the trace. Therefore, the
operations involving pc and bytecode can be constant folded, which gives us the following
trace:

# MOV_R_A 0

a = regs [0]

The result is a trace of the language interpreter that resembles a trace of the user program.

The preliminary evaluation of PyPy involved simple benchmarks. One benchmark was the
interpreter and bytecode program in Figures 12 and 13. The other benchmark was Python
running a very small function. On that benchmark, PyPy performed faster than CPython,
the default Python implementation. A later journal paper [6] provided better benchmarks.

X: Keep in mind that CPython is interpreted, so this is a low bar.

18



History of Programming Languages

Tracing JITs for Dynamic Languges
February 17 2017

Ming-Ho Yee

5 Loop-Aware Optimizations

Loop-Aware Optimizations in PyPy’s Tracing JIT

Ardö, Bolz, and Fijałkowski. DLS 2012. [1]

Mike Pall originally implemented this optimization in LuaJIT. There are no publications on
LuJIT, but Pall posted to the Lua mailing list [17] and invited researchers to explore and
learn from his code.

X: Why is Pall not one of the authors, then?

MHY: He got a special acknowledgement, and reviewed drafts of the paper.

Y: Who has heard of Schönfinkel? Once he gave a talk and someone—nobody
knows who—in the audience took excellent notes, turned those into a paper, and
published it under Schönfinkel’s name. That is how you give someone credit.

Dynamic languages often have loop invariant code, which performs operations such as
type checking, wrapping or unwrapping values, and method dispatch. The paper provides an
even simpler example, which prints in an infinite loop:

L0(i0):

i1 = i0 + 1

print(i1)

jump(L0, i0)

In this code, i0 is loop invariant. Therefore, the addition statement can be hoisted. However,
optimizations in tracing JITs are designed to be very simple and fast, and therefore have no
knowledge of control flow. Many optimizations are implemented as a single pass, and cannot
determine i0 is loop invariant.

However, if an earlier phase “peels” off a single iteration of the loop and duplicates it, the
optimizer can see two separate iterations. Note that jumps and labels need to be updated:

# preamble

L0(i0):

i1 = i0 + 1

print(i1)

jump(L1, i0)

# peeled loop

L1(i0):

i2 = i0 + 1

print(i2)

jump(L1, i0)

Now the optimizer observes that i2 can be replaced by i1, and the addition in the peeled
loop can be removed. However, the jumps and labels need to be adjusted again:
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Original Loop: After Loop Peeling:

Preamble

Peeled Loop

Figure 14: Overview of loop peeling. [1, Fig. 3]

# preamble

L0(i0):

i1 = i0 + 1

print(i1)

jump(L1, i0)

# peeled loop

L1(i0, i1):

print(i1)

jump(L1, i0, i1)

Figure 14 depicts an overview of loop peeling. Note that the jump arguments of the original
loop (J1, . . . , J|J |) are equal to the label arguments of the peeled loop. Furthermore, the jump
arguments of the preamble and the peeled loop need to be adjusted. The full details of this
transformation, and how the mapping of variable renames is maintained, is described in the
paper, along with a more realistic example and other optimizations that benefit from loop
peeling.

The paper notes that TraceMonkey [12] implements a similar optimization for loop
invariant code, but must directly implement it. In contrast, LuaJIT and PyPy are able to
reuse existing optimization passes with just a simple loop peeling transformation.
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The authors implemented loop peeling in PyPy in only 450 lines of code. They evaluated
the technique with handwritten numeric benchmarks (such as convolution, dilation, edge
finding, and square root), as well as the SciMark benchmarks [18]. They compared PyPy
with and without loop peeling and LuaJIT with and without loop peeling. The authors
observed a speedup of 70% with loop peeling. Figure 15 summarizes the results.

X: One thing that these papers don’t mention is that you need a very long warmup
time before getting good numbers. It’s a bit iffy because you usually don’t want
a along warmup time.

Y: This is a point in favour for Pycket. It’s OK to run the interpreter hundreds
of times.

X: What is the right methodology to study a self-adapting system? On the first
run, you’re just going to measure the compilation times. And maybe after the
first hundred iterations, it’s still not at the steady state.

Z: Has anyone done a study on how long it takes to warmup?

X: Yes, there was some work recently [3]. They had some really fun results.
Sometimes there is no steady state and it just ping pongs!
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FFT(1024,32768)

FFT(1048576,2)

LU(100,4096)

LU(1000,2)

MonteCarlo(268435456)

SOR(100,32768)

SOR(1000,256)

SparseMatMult(1e4,5e3,262144)

SparseMatMult(1e5,1e6,1024)

conv3(1e6)

conv3x3(1000,1000)

dilate3x3(1000,1000)

sobel(1000,1000)

sqrt(foat)

sqrt(int)

sqrt(Fix16)

14.9x

24.3x

23.0x

12.2x

13.2x

14.1x

25.0x

10.1x

22.4x

gcc -O3

PyPy no LP

PyPy

LuaJ IT no LP

LuaJ IT

Figure 15: Benchmark results of loop peeling. The baseline is C, compiled with gcc -O3. [1,
Fig. 10]

22



History of Programming Languages

Tracing JITs for Dynamic Languges
February 17 2017

Ming-Ho Yee

Conclusion

Tracing first appeared in 2000, in the Dynamo project. The idea was simple: identify hot
traces of code in a program, record the sequence of instructions that are executed, and
generate more efficient code. Since a trace is a linear sequence of code, it improves cache
locality. Furthermore, the lack of internal control flow merge points means a trace is easier
to optimize.

A few years later, tracing was implemented in a JIT for Java. Although the prototype did
not match HotSpot’s performance, it had significantly less overhead and required significantly
less engineering effort.

There were hopes that tracing would be useful for JavaScript, a language that lacks static
type information. TraceMonkey was a tracing JIT that speculates and types and generates
specialized code. However, this ended up as a dead end: while TraceMonkey performed
extremely well on integer benchmarks, it did not work well with real web code.

But tracing itself was not a dead end. With PyPy, tracing happens at the “meta-level,”
where the program being traced is an interpreter. LuaJIT is a successful tracing JIT for
Lua, but there are no publications. However, the project is open source and available for
researchers to examine. In particular, an optimization technique called “loop peeling” was
first implemented in LuaJIT, but then adapted for PyPy and published.

Although TraceMonkey was not very successful and was eventually abandoned, tracing
continues in LuaJIT and PyPy, and both projects are still being actively developed.
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