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Abstract

Static program analysis is a powerful technique for maintaining software, with applica-
tions such as compiler optimizations, code refactoring, and bug finding. Static analyzers
are typically implemented in general-purpose programming languages, such as C++ and
Java; however, these analyzers are complex and often difficult to understand and maintain.
An alternate approach is to use Datalog, a declarative language. Implementors can express
analysis constraints declaratively, which makes it easier to understand and ensure correct-
ness of the analysis. Furthermore, the declarative nature of the analysis allows multiple,
independent analyses to be easily combined.

Flix is a programming language for static analysis, consisting of a logic language and a
functional language. The logic language is inspired by Datalog, but supports user-defined
lattices. The functional language allows implementors to write functions, something which
is not supported in Datalog. These two extensions, user-defined lattices and functions, allow
Flix to support analyses that cannot be expressed by Datalog, such as a constant propagation
analysis. Datalog is limited to constraints on relations, and although it can simulate finite
lattices, it cannot express lattices over an infinite domain. Finally, another advantage
of Flix is that it supports interoperability with existing tools written in general-purpose
programming languages.

This thesis discusses the implementation of the Flix functional language, which involves
abstract syntax tree transformations, an interpreter back-end, and a code generator back-
end. The implementation must support a number of interesting language features, such as
pattern matching, first-class functions, and interoperability.

The thesis also evaluates the implementation, comparing the interpreter and code
generator back-ends in terms of correctness and performance. The performance benchmarks
include purely functional programs (such as an N -body simulation), programs that involve
both the logic and functional languages (such as matrix multiplication), and a real-world
static analysis (the Strong Update analysis). Additionally, for the purely functional
benchmarks, the performance of Flix is compared to C++, Java, Scala, and Ruby.

In general, the performance of compiled Flix code is significantly faster than interpreted
Flix code. This applies to all the purely functional benchmarks, as well as benchmarks that
spend most of the time in the functional language, rather than the logic language. Further-
more, for purely functional code, the performance of compiled Flix is often comparable to
Java and Scala.
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Chapter 1

Introduction

As software becomes increasingly widespread and complex, it becomes more important
to manage its complexity and correctness. One powerful technique for this task is static
program analysis, with applications such as compiler optimizations, code refactoring, and
bug finding. A static analysis typically models abstract program state as elements of lattices,
where the lattice ordering represents precision. Elements lower in the lattice correspond to
more precise information about the program under analysis. The statements of the program
constrain the solution to the analysis problem, and the goal is to find the most precise—and
therefore minimal—solution. This solution can be computed by iterating from the bottom
element of the lattice, until reaching a fixed point that satisfies the constraints [18, 45].

Static analyzers, which are commonly implemented in general-purpose programming
languages such as C++ and Java, are themselves complex pieces of software and can be
difficult to maintain. Furthermore, they involve many specific implementation details, such
as the choice of evaluation strategy and data structures, which become tightly coupled with
the analysis. The details are necessary for solving the fixed point problem of the analysis;
however, it becomes more challenging to understand and ensure correctness of the actual
analysis. Another problem is that optimizations must be manually implemented for each
static analyzer and cannot easily be reused.

An alternate approach is to implement static analyses in Datalog, a declarative pro-
gramming language. Datalog has its roots in Prolog, logic programming, and deductive
databases [16, 36]. A Datalog program is a set of constraints over relations, where each
relation is a set of facts and is therefore an element of the power set lattice of facts. The
solution to a Datalog program is the minimal model that satisfies those constraints, and
is computed by a Datalog solver. One useful property of Datalog is that every program
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is guaranteed to terminate with the minimal model. A programmer can clearly write
the constraints of a problem in Datalog, leave the specifics of computing the solution to
the solver, and be assured that the analysis will terminate. Additionally, an independent
solver allows the programmer to choose between different solver implementations, and
an optimization only needs to be implemented once per solver. These advantages make
Datalog a useful language for implementing static analyses, such as points-to analyses of
Java programs [3, 13, 71, 80]. The declarative nature of the analysis makes it easier to
understand and maintain, and also easier to combine with other independent analyses.

However, Datalog has limitations that restrict its expressiveness. Many important
analyses, such as constant propagation, are based on more general lattices than just
relations, and cannot be represented in Datalog. Furthermore, Datalog does not support
user-defined functions. In some cases, these limitations can be worked around by embedding
a lattice in a power set, or by explicitly tabulating inputs and outputs to simulate a function.
However, these approaches are cumbersome and inefficient, and impossible for lattices and
functions with infinite domains. Furthermore, most Datalog implementations have poor
interoperability with existing tools—typically, a front-end tool extracts input facts from the
program under analysis, and then provides the facts to a Datalog solver in a textual format.

Flix is a new programming language designed to address these limitations [53]. The
implementation is open source and available on GitHub1. The semantics of Flix are based
on Datalog and preserve Datalog’s termination guarantee. However, Flix extends Datalog
to support user-defined lattices and functions, allowing a larger class of analyses to be
expressed. Constraints on lattices and relations are expressed in a logic language with
Datalog-like syntax, while functions are expressed in a pure functional language with Scala-
like syntax. Furthermore, since Flix is implemented on the Java Virtual Machine (JVM), it
easily supports interoperability with JVM languages.

The main contributions of this thesis are the implementation of the functional language
of Flix and its evaluation. The implementation involves abstract syntax tree transformations,
an interpreter back-end, and a code generator back-end, while the evaluation compares
both back-ends in terms of correctness and performance.

The thesis is structured as follows: Chapter 2 describes the background for this thesis,
specifically an informal overview of Flix, its architecture, and its interoperability with
the JVM. Chapter 3 examines the implementation of the functional language. Chapter 4
discusses the evaluation in terms of correctness and performance, comparing both back-ends
and also benchmarks implemented in other languages. Chapter 5 explores related work,
Chapter 6 considers future work, and Chapter 7 concludes.

1https://github.com/flix/flix
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Chapter 2

Background

This chapter discusses the background material necessary for understanding the thesis.
It provides an informal overview of the Flix language (2.1), the architecture of the Flix
implementation (2.2), and a brief description of interoperability with Flix (2.3). The
discussion in this chapter is not meant to be a detailed tutorial or a formal specification.

2.1 The Flix Language

Flix is a programming language for static analysis. It is based on Datalog, but extended
with user-defined lattices and functions. Flix consists of a logic language with Datalog-like
syntax and a functional language with Scala-like syntax. This section first walks through a
simple Flix implementation of a constant propagation analysis (2.1.1), before discussing
the logic language (2.1.2) and the functional language (2.1.3). Two examples illustrate the
semantics of the Flix language.

2.1.1 Constant Propagation in Flix

The example in Figure 2.1 expresses a constant propagation analysis, but with some details
simplified. Line 1 defines the ConstProp namespace. Since all definitions in this example
are within the ConstProp namespace, function and constant names do not need to be fully
qualified. Lines 2–4 declare the Constant tagged union, whose members, or tags, represent
elements of the constant propagation lattice. When referenced, a tag must be prefixed by its
enum name. Lines 6–12 define the leq function, where the function body is an expression
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1 namespace ConstProp {
2 enum Constant {
3 case Top, case Cst(Int), case Bot
4 }
5
6 def leq(e1: Constant, e2: Constant): Bool =
7 match (e1, e2) with {
8 case (Constant.Bot, _) => true
9 case (Constant.Cst(n1), Constant.Cst(n2)) => n1 == n2

10 case (_, Constant.Top) => true
11 case _ => false
12 }
13
14 // definitions omitted for brevity
15 def lub(e1: Constant, e2: Constant): Constant = ...
16 def glb(e1: Constant, e2: Constant): Constant = ...
17
18 let Constant<> = (Constant.Bot, Constant.Top, leq, lub, glb)
19
20 // definitions omitted for brevity
21 def sum(e1: Constant, e2: Constant): Constant = ...
22 def isMaybeZero(e: Constant): Bool = ...
23
24 // analysis inputs
25 rel AsnStm(r: Str, c: Int) // r = c
26 rel AddStm(r: Str, x: Str, y: Str) // r = x + y
27 rel DivStm(r: Str, x: Str, y: Str) // r = x / y
28
29 // analysis outputs
30 lat LocalVar(k: Str, v: Constant)
31 rel ArithError(r: Str)
32
33 LocalVar(r, Constant.Cst(c)) :´ AsnStm(r, c).
34 LocalVar(r, sum(v1, v2)) :´ AddStm(r, x, y),
35 LocalVar(x, v1),
36 LocalVar(y, v2).
37 ArithError(r) :´ isMaybeZero(v),
38 DivExp(r, x, y),
39 LocalVar(y, v).
40 }

Figure 2.1: An example Flix program implementing a simple constant propagation analysis.
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written in the Flix functional language. For brevity, the function bodies of lub and glb

are omitted. Line 18 enables lattice semantics for the Constant tagged union, specifying
its top element (Constant.Top), its bottom element (Constant.Bot), the partial order on
the lattice (leq), the least upper bound operator (lub), and the greatest lowest bound
operator (glb).

Line 21 declares the sum transfer function and line 22 declares the isMaybeZero filter
function. Their function bodies are omitted, again for brevity. Lines 25–27 define the
AsnStm, AddStm, and DivStm relations, and represent the analysis inputs. Lines 30–31
define the LocalVar lattice and ArithError relation, and represent the analysis outputs.
The LocalVar lattice is similar to a relation declaration, but its last attribute must be
a lattice type, in this case, Constant. Finally, lines 33–39 define the constraints of the
analysis, which are written as rules in the Flix logic language.

2.1.2 The Logic Language

Constraints on lattices and relations are expressed as rules in the Flix logic language. Like
Datalog, a rule in Flix consists of a head on the left-hand side of :- (read as “if” or “is
implied by”), and an optional body on the right-hand side. A rule without a body is called
a fact. The head is an atom while the body is a list of atoms. In Flix, the body may
also include a list of filter function applications. An atom consists of a predicate symbol
with terms as its arguments. A term is either a constant value or a variable. In Flix, the
last term of the head predicate may contain transfer function applications. Figure 2.2
summarizes the syntax of Flix rules.

The semantics of the Flix logic language are based on the semantics of Datalog: if the
body of a rule is satisfied by some set of existing facts, then the head of the rule must also
be satisfied. This infers a new fact, which may cause rules to be re-evaluated and more
facts to be inferred. This process continues until no more new facts are inferred—in other
words, when the fixed point is reached. The resulting set of facts is called the solution, or
minimal model.

Flix extends Datalog in three ways, by supporting lattices, filter functions, and transfer
functions. Furthermore, as long as every lattice has finite height and every function is
strict and monotone, a Flix program is guaranteed to terminate with the minimal model.
The formal semantics are described in the original Flix paper [53], but two examples are
provided here as an informal overview.
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xruley ::= xheady :- xbodyy . (rule)
| xheady . (fact)

xheady ::= xatomy (head)

xbodyy ::= xfun-appsy , xatomsy (body)
| xatomsy

xatomy ::= pred ( xtermsy ) (atom)

xatomsy ::= xatomsy , xatomy
| xatomy

xfun-appy ::= ident ( xterms-opty ) (function application)

xfun-appsy ::= xfun-appsy , xfun-appy
| xfun-appy

xtermy ::= val | var | xfun-appy (term)

xtermsy ::= xtermsy , xtermy
| xtermy

xterms-opty ::= xtermsy | ǫ

Figure 2.2: The grammar of Flix rules. Only the last term of the head predicate may contain
function applications, but for simplicity, this restriction is not enforced by the grammar.
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Example 1

Consider the constant propagation analysis in Figure 2.1. To keep this example simple,
only the first rule of the analysis will be examined:

LocalVar(r, Constant.Cst(c)) :´ AsnStm(r, c).

The rule states that if the value c is assigned to the variable r, then the local variable r

has the abstract value Constant.Cst(c).

The analysis will run on two input facts, which have been extracted from the program
under analysis by a separate front-end tool:

AsnStm("x", 0).
AsnStm("x", 1).

These facts represent a variable x that has been assigned the values 0 and 1. It is unknown
whether the assignment occurred in the same or different control flow branches. The two
facts cause the above rule to be evaluated, which infers two new facts:

LocalVar("x", Constant.Cst(0)).
LocalVar("x", Constant.Cst(1)).

Under Datalog semantics, LocalVar would be a relation, and the two inferred facts above
would be the solution to the analysis. However, this is a Flix program where LocalVar has
been declared as a lattice, so the semantics—and thus the solution—is different.

The Flix semantics treat LocalVar as a map lattice, where all the attributes except for
the last represent the key, while the last attribute represents the value. Since the two facts
have the same key ("x") but different values (Constant.Cst(0) and Constant.Cst(1)),
Flix merges the values by taking the least upper bound. This is implemented by calling the
lub function with the two values, which returns Constant.Top. Therefore, the solution is
a single fact:

LocalVar("x", Constant.Top).

The static analysis was unable to compute an exact value for x. However, x has some value,
which Flix approximates as Constant.Top.

7



Example 2

The previous example illustrated the basic idea behind Flix lattices and how they differ
from Datalog relations. This second example will reinforce those differences, and also
demonstrate transfer functions and filter functions.

As before, consider the constant propagation analysis, with the program under analysis
encoded as the following input facts:

1 AsnStm("a", 0). // a = 0
2 AsnStm("b", 0). // b = 0
3 AsnStm("c", 1). // c = 1
4 // if (mystery())
5 AddStm("d", "a", "b"). // d = a + b
6 // else
7 AddStm("d", "a", "c"). // d = a + c
8 //
9 DivStm("e", "c", "d"). // e = c / d

The first three AsnStm facts cause evaluation of the rule

LocalVar(r, Constant.Cst(c)) :´ AsnStm(r, c).

This generates the three following facts:

LocalVar("a", Constant.Cst(0)).
LocalVar("b", Constant.Cst(0)).
LocalVar("c", Constant.Cst(1)).

These new facts, along with the AddStm input facts on lines 5 and 7, cause evaluation of
the second rule

LocalVar(r, sum(v1, v2)) :´ AddStm(r, x, y),
LocalVar(x, v1),
LocalVar(y, v2).

The rule states that if r is assigned the value x + y, the variable x has value v1, and the
variable y has value v2, then the local variable r has the value sum(v1, v2), where sum is a
transfer function that must be evaluated. This generates two facts with the same key ("d")
but different values (Constant.Cst(0) and Constant.Cst(1)), which—due to the Flix
lattice semantics—are merged by calling the lub function, to generate a single fact:

LocalVar("d", Constant.Top).

8



This new fact for d, along with the input fact on line 9, causes evaluation of the rule

ArithError(r) :´ isMaybeZero(v),
DivExp(r, x, y),
LocalVar(y, v).

The rule states that if r is assigned the value x / y, the variable y has the value v, and if the
function application isMaybeZero(v) evaluates to true, then there may be an arithmetic
error involving r. This infers the fact

ArithError("e").

If isMaybeZero(v) evaluated to false, then the rule would not infer a new fact.

At this point, no further evaluation of the rules is necessary and the minimal model has
been computed:

LocalVar("a", Constant.Cst(0)).
LocalVar("b", Constant.Cst(0)).
LocalVar("c", Constant.Cst(1)).
LocalVar("d", Constant.Top).
ArithError("e").

The analysis has computed exact values for the variables a, b, and c, but not for d, because
of a branch in the control flow of the program. To maintain soundness, the analysis
returned the approximate result, Constant.Top. Finally, the analysis has identified a
possible arithmetic error involving the variable e.

2.1.3 The Functional Language

Expressions in Flix are implemented in a pure and strict functional language, with Scala-like
syntax. Figure 2.3 summarizes the grammar of expressions. An expression can be a
literal, variable reference, function call, built-in unary or binary expression, let-binding,
if-expression, pattern match expression, tag expression, or tuple expression.

Flix supports a wide variety of literals and data types, including unit, booleans, charac-
ters, floating point numbers, integers, and strings. Floating point numbers can be single-
or double-precision. Integers are signed and can have 8, 16, 32, 64, or arbitrarily many
bits. Flix also supports two compound types: tuples and tagged unions. A member of a
tagged union, or a tag, must be written as enum.tag val, where enum is the enum name
(Constant in the Figure 2.1 example), tag is the member (Top, Cst, or Bot), and val is
the inner tag value (an integer for Constant.Cst), which may be omitted if it is unit.
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xexpy ::= lit (literal)
| ident (variable)
| xfqny ( xexps-opty ) (call)
| xunopy xexpy (unary)
| xexpy xbinopy xexpy (binary)
| let ident = xexpy in xexpy (let)
| if ( xexpy ) xexpy else xexpy (if)
| match xexpy with { xcasesy } (match)
| ident . ident ( xexps-opty ) | ident . ident (tag)
| ( xexpsy , xexpy ) (tuple)

xexpsy ::= xexpsy , xexpy | xexpy

xexps-opty ::= xexpsy | ǫ

xfqny ::= xfqn-prefixy / ident

xfqn-prefixy ::= xfqn-prefixy . ident | ident

xunopy ::= ! | + | - | ~

xbinopy ::= + | - | * | / | % | ** (arithmetic)
| < | <= | > | >= | == | != (comparison)
| && | || | ==> | <==> (logical)
| & | | | ^ | << | >> (bitwise)

xcasey ::= case xpatterny => xexpy

xcasesy ::= xcasesy xcasey

xpatterny ::= _ (wildcard)
| ident (variable)
| lit (literal)
| ident . ident ( xpatterns-opty ) | ident . ident (tag)
| ( xpatternsy , xpatterny ) (tuple)

xpatternsy ::= xpatternsy , xpatterny | xpatterny

xpatterns-opty ::= xpatternsy | ǫ

Figure 2.3: The grammar of Flix expressions.
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Solver

Bytecode OR Interpreter

Abstract
Syntax
Tree

Codegen

Figure 2.4: Architecture of the Flix back-end. The ExecutableAst is the input to the back-
end, which consists of the logic language implementation (solver) and the functional language
implementation (code generator or interpreter).

2.2 Architecture of the Flix Implementation

Flix is implemented in Scala [61], a functional and object-oriented programming language
that runs on the Java Virtual Machine (JVM) [51]. This allows Flix to run on any platform
with a JVM, and furthermore, easily integrate with existing JVM tools.

The front-end architecture of Flix is typical for a compiler, with phases for parsing,
weeding, name resolution, and type checking. Each phase produces an abstract syntax
tree (AST), which is fed into the next phase. These ASTs are the ParsedAst, WeededAst,
ResolvedAst, and TypedAst. The result of the type checking phase, the TypedAst, under-
goes a number of transformations before reaching the back-end. These transformations
include compiling higher-level constructs to lower-level primitives, closure conversion and
lambda lifting, and variable numbering. The process creates a SimplifiedAst and then an
ExecutableAst, which serves as the input to the back-end.

The architecture of the back-end is depicted in Figure 2.4. It has two components: the
logic language implementation and the functional language implementation. The logic
language is implemented by the solver, which evaluates rules in the program. The solver was
developed by another member of the research team and is outside the scope of this thesis—a
paper concerning the solver is currently in submission. The functional language has two
implementations: an AST interpreter and a JVM bytecode generator. The interpreter was
the original back-end, which is easier to understand and maintain, while the code generator
is the default back-end, as it provides better performance.
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Execution in the back-end starts in the solver, which evaluates the rules in the logic
language using a fixed-point algorithm. As the solver computes a solution, it may need
to evaluate expressions written in the functional language. To do so, the solver calls the
generated bytecode or the interpreter. This happens in two cases: when the solver needs to
evaluate a lattice operation, such as lub, or when a filter or transfer function application
explicitly appears in a rule. Once the functional code has been evaluated, the resulting
value is returned to the solver, which then continues its computation.

2.3 Interoperability with Flix

One of the goals of Flix is to integrate with existing tools and front-ends, without having to
communicate through a textual interface. Flix can be called as a JVM library, and returns
solutions as JVM objects. Furthermore, the application programming interface (API) allows
Flix code to call external JVM functions, or hooks.

A hook must be implemented as a function object that implements the functional
interface Invokable. This interface is provided by Flix and declares a single abstract
method apply. The method takes an array of IValues, representing the function arguments,
and returns an IValue. Hooks are programmatically added to Flix by calling the addHook

API method, which takes a name, the Flix type of the hook, and the object implementing
the external function. Within Flix, the name is bound to the hook and can be called as if
it were a Flix function.

The IValue interface abstracts and hides the internal implementation details of Flix
types and values. This allows the implementation to change without affecting the interface
or breaking existing code. However, there is a performance penalty, as all Flix values need
to be wrapped and unwrapped as IValue objects. Users who wish to avoid this penalty—at
the risk of having the implementation change—can use the InvokableUnsafe interface and
the addHookUnsafe method. This interface avoids wrapping, but all Flix values are cast to
java.lang.Object. The user must then manually cast java.lang.Object to the actual
type of the Flix value.

This interoperability feature allows static analysis implementors to write Flix functions
in languages such as Java or Scala, which offers more flexibility than using just the Flix
functional language. An implementor could also integrate Flix into an existing framework
such as Soot [78] or WALA [25]—the framework would extract facts from the program
under analysis, call Flix as a library, receive the solution from Flix, and then continue
with further analysis. Both of these use cases are difficult, if not impossible, with existing
Datalog implementations.

12



Chapter 3

Implementation

This chapter comprises the main contribution of the thesis, discussing the implemen-
tation of the functional language of Flix. It discusses the abstract syntax tree (AST)
transformations (3.1), the interpreter back-end (3.2), and the code generator back-end (3.3).

Although the code examples in this chapter resemble Flix, they are not valid Flix
programs. The pseudocode omits details, contains features not currently supported by Flix,
and includes constructs that have no source-level representation.

3.1 Abstract Syntax Tree Transformations

The front-end phases perform parsing, weeding, name resolution, and type checking, produc-
ing a TypedAst that directly corresponds to the source program. However, before the AST
can be consumed by the back-end, further transformations are required. A phase trans-
forms the TypedAst into the SimplifiedAst, compiling pattern matching into lower-level
primitives (3.1.1), and further phases modify the SimplifiedAst directly, by performing
closure conversion and lambda lifting (3.1.2), as well as variable numbering (3.1.3).

Currently, the Flix implementation does not include any optimization phases, but they
could be applied at this point. Once optimizations (if any) are complete, the AST enters
the final phase, which creates an ExecutableAst. This AST is nearly identical to the
SimplifiedAst, except that lists are converted to arrays for performance, and mutable
fields are added to record performance and debugging information. The interpreter back-end
directly interprets the ExecutableAst, while the code generator back-end consumes the
ExecutableAst to produce JVM bytecode.
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// before
match x with {
case PAT1 => EXP1
case PAT2 => EXP2
case _ => ERROR // implicit default case

}

// after
let v_0 = x in
let err = λ() ERROR in
let e_2 = λ() if (PAT2 succeeds) EXP2 else err() in
let e_1 = λ() if (PAT1 succeeds) EXP1 else e_2() in
e_1()

Figure 3.1: An example pattern match expression before and after transformation, shown in
pseudocode. The pattern match expression is compiled into a series of nested let-bindings and
lambda functions.

3.1.1 Compiling Pattern Match Expressions

The functional language of Flix supports pattern matching: expressions can be matched
against wildcards, bound to variables, or matched against literals, and tag and tuple
expressions can be destructed. Some languages allow pattern matching in parameters of
function definitions, but Flix only supports pattern matching in case expressions. The full
grammar for pattern match expressions is described in Figure 2.3 and an example is shown
in the leq function of Figure 2.1.

Pattern matching in the source program directly corresponds to nodes in the TypedAst.
The match expression in the upper half of Figure 3.1 corresponds to a Match node, with a
child node for the expression to be matched (e.g. x) and a list of cases. Each case contains
a pattern node (e.g. PAT1) and a body expression node (e.g. EXP1). The interpreter could
consume the TypedAst and directly implement pattern matching; however, this is less
straightforward for the code generator. For consistency, both the interpreter and code
generator use the ExecutableAst, rather than having the interpreter use the TypedAst

and the code generator use the ExecutableAst.

The TypedAst representation of pattern matching must be transformed into lower-level
primitives in the SimplifiedAst, as shown in the lower half of Figure 3.1. (Recall that
the SimplifiedAst is transformed into an ExecutableAst before being consumed by the
back-end.) The SimplifiedAst primitives include let-bindings, if-expressions, and lambda
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functions, as well as primitives without corresponding source-level syntax: CheckTag,
GetTagValue, and GetTupleIndex. CheckTag(t,v) checks the value v against the tag
name t, GetTagValue(v) extracts the inner value of a tag v, and GetTupleIndex(v,i)

extracts the element at the index i from the tuple value v.

Pattern-matching compilation [11] is implemented as the functions Expression.simplify

and Pattern.simplify. Expression.simplify rewrites a match expression into a series
of nested let-bindings and lambda functions, as shown in Figure 3.1. On the other hand,
Pattern.simplify converts a single pattern, for instance PAT1, into a lambda body. Each
lambda function represents a single case which calls the next function if the match fails.

Expression.simplify starts by generating fresh variable names for the expression
to be matched, each of the cases, and the implicit default case. The expression to be
matched is then bound to one of these fresh variables. In Figure 3.1, this binds x to v_0,
allowing x to be evaluated only once while v_0 can be referenced multiple times. Next,
Expression.simplify binds an error function to a name, for example err. The error
function represents the body of the implicit default case, which throws an error if none of
the other cases successfully match at run time.

The remaining cases are handled in reverse order. This builds a hierarchy of nested
let-bindings from outside-in, making the names of each case visible to the preceding cases.
For instance, Expression.simplify starts by processing the last non-default case, calling
Pattern.simplify to convert PAT2, and then binding a lambda function to the fresh
variable e_2. At run time, if the match succeeds, then EXP2 is evaluated; otherwise the
next case, err, is called. If the cases were processed in forward order, then err would not
be visible from within e_2. Finally, the body of the innermost let-binding contains a call to
the first case, e_1, which begins evaluation of the pattern match expression.

Pattern.simplify is called by Expression.simplify and converts each individual
pattern, rather than the entire pattern match expression. Pattern.simplify is a recursive
function taking four arguments: a list of patterns, a list of variable names, a “success”
expression, and a “fail” expression. Initially, each list contains a single element, representing
the original pattern and variable name. However, additional patterns and temporary
variable names are prepended to the lists whenever a subpattern is processed.

In the base case for Pattern.simplify, the pattern and variable lists are empty, so
the function generates code to evaluate the “success” expression. In the recursive case,
Pattern.simplify generates code to match the first variable against the first pattern, and
then recurses on the lists. At run time, a successful match will evaluate the next variable
and pattern, while a failure will evaluate the “fail” expression. The details for each of the
different patterns are discussed in the subsections below.
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Wildcard Pattern

A wildcard pattern match always succeeds. The example in Figure 3.2 matches x against a
wildcard, so it always returns the body, true. This translates to the function e_1 whose
body is simply the body of the case. No equality checks or let-bindings are required.

// before
match x with {
case _ => true

}

// after
let v_0 = x in
let err = λ() ERROR in
let e_1 = λ() true in
e_1()

Figure 3.2: A wildcard pattern match before and after transformation.

Variable Pattern

Similar to the wildcard pattern, a variable pattern match always succeeds. However, a
variable pattern also binds the matched value to the variable name in the pattern. This is
typically used in a subpattern to extract values from tags and tuples. In Figure 3.3, the
pattern match binds x to the name n, and the case body adds 1 to n. This translates to a
let-binding in the compiled pattern match.

// before
match x with {
case n => n + 1

}

// after
let v_0 = x in
let err = λ() ERROR in
let e_1 = λ() (let n = v_0 in n + 1) in
e_1()

Figure 3.3: A variable pattern match before and after transformation.
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Literal Pattern

A literal pattern match only succeeds if the expression to be matched equals the literal
in the pattern. In Figure 3.4, the pattern match compares x to 42. If it succeeds, the
expression returns true. Otherwise, the default case is evaluated and an error is thrown.
This translates to an if-expression, where the condition is the equality comparison, the true
branch is the case body, and the false branch calls the next case.

// before
match x with {
case 42 => true

}

// after
let v_0 = x in
let err = λ() ERROR in
let e_1 = λ() if (v_0 == 42)

true
else
err() in

e_1()

Figure 3.4: A literal pattern match before and after transformation.

Tag Pattern

A tag pattern match succeeds if the expression to be matched has the same enum and tag
names as the tag in the pattern, and the subpattern successfully matches. The example
in Figure 3.5 defines a tagged union E with the tags A and B, which respectively contain
an integer value and a string value. Here, E is the enum name, while A and B are the tag
names. The pattern match checks that x is an E.A tag, and if so, matches the subpattern
against the inner value of the tag. In this example, the subpattern is a literal pattern that
compares the tag value to 42.

The pattern match translates to an if-expression, where the condition uses the CheckTag

primitive. Note that the type checker ensures x is a member of the tagged union E, so
CheckTag only needs to check that x is an A tag. The true branch of the if-expression first
extracts the tag value with GetTagValue and binds it to the fresh variable name n_0. Then
the translated subpattern compares n_0 to 42. If the subpattern succeeds, the case body
true is returned. If either check fails, the next case is called.
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enum E {
case A(Int),
case B(Str)

}

// before
match x with {
case E.A(42) => true

}

// after
let v_0 = x in
let err = λ() ERROR in
let e_1 = λ() if (CheckTag(A, v_0))

let n_0 = GetTagValue(v_0) in
if (n_0 == 42)
true

else
err()

else
err() in

e_1()

Figure 3.5: A tag pattern match before and after transformation.

Tuple Pattern

While a tag pattern contains a single subpattern, a tuple pattern contains multiple subpat-
terns, each corresponding to an element of the tuple. The type checker guarantees that the
arity and type of the tuple to be matched equals the arity and type of the tuple pattern.
Therefore, all the pattern match needs to do is bind each of the tuple elements to fresh
variable names, and then match those variables against the subpatterns.

In Figure 3.6, x is guaranteed to be a tuple of two integers. The tuple pattern translates
to a series of let-bindings, where the tuple elements are extracted with GetTupleIndex and
bound to the fresh variable names n_0 and n_1. Next, each of the subpatterns is translated.
In this example, they are literal patterns, and compare the first tuple element n_0 to 4

and the second tuple element n_1 to 2. If both succeed, the case body true is returned;
otherwise, the next case is called.
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// before
match x with {
case (4, 2) => true

}

// after
let v_0 = x in
let err = λ() ERROR in
let e_1 = λ() let n_0 = GetTupleIndex(v_0, 0) in

let n_1 = GetTupleIndex(v_0, 1) in
if (n_0 == 4)
if (n_1 == 2)
true

else
err()

else
err() in

e_1()

Figure 3.6: A tuple pattern match before and after transformation.

3.1.2 Closure Conversion and Lambda Lifting

At this time, Flix has partial support for lambda functions. Specifically, in the back-end,
lambda functions are completely implemented, since they are required for pattern matching.
However, the front-end does not yet support lambda functions, so users cannot write lambda
expressions in the source program.

Similar to pattern matching, lambda functions could be directly implemented in the
interpreter. However, this is not possible for code generation, since all functions are
compiled to bytecode methods, which must be defined at the top-level and cannot be nested.
Furthermore, a function call must apply its arguments to some function reference—it cannot
apply arguments to an arbitrary expression that evaluates to a function.

Lambda Lifting

The first problem, only allowing top-level function definitions, could be solved by a trans-
formation called lambda lifting [42]. Consider the example program below:

19



def f() = let g = λ(x, y) x+y in
g(1, 2)

The nested definition for g is not allowed in bytecode, so the transformation lifts it:

def f() = g(1, 2)
def g(x, y) = x+y

This also binds the function to a name, allowing the code generator to implement calls to
named functions. However, the approach fails if the nested function contains free variables:

def f(a) = let g = λ(x, y) a+x+y in
g(1, 2)

Within g, the variables x and y are bound and their values are provided by the arguments
to the lambda function. However, a is a free variable and has no binding once g is lifted:

def f(a) = g(1, 2)
def g(x, y) = a+x+y // what is a?

Therefore, lambda lifting must modify the lambda function’s parameter list by prepending
the free variables:

def f(a) = let g = λ(a1, x, y) a1+x+y in
g(a, 1, 2)

Now g can be lifted:

def f(a) = g(a, 1, 2)
def g(a1, x, y) = a1+x+y

Note that the transformation also rewrote the call to g, since it now takes three arguments.

Closure Conversion

Unfortunately, lambda lifting does not work for higher-order functions: if g is returned
from a function or passed as an argument to a function, it becomes more difficult to identify
the call sites that need to be rewritten. It may not even be possible to supply the value for
the newly added parameter:

def f(a) = let g = λ(a1, x, y) a1+x+y in
h(g, 1, 2)

def h(g1, x, y) = g1(x, y) // how to rewrite g1?
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The actual problem is that the variables in the lambda function need to be bound at two
distinct times. x and y are the original parameters and are bound as arguments when
the function is called. However, a is bound when the lambda function is defined. The
solution is to convert the lambda function into a closure, a structure that contains code
(the rewritten lambda function) and data (the captured values that need to be passed to
the lambda function). These captured values are bound when the closure is created, and
stored so they can be applied when the closure is called. This transformation is called
closure conversion [8].

In the SimplifiedAst, a closure is created by a MkClosure node and called by an
ApplyClosure node:

def f(a) = let g = MkClosure(λ(a1, x, y) a1+x+y, a) in
h(g, 1, 2)

def h(g1, x, y) = ApplyClosure(g1, x, y)

When the MkClosure node is evaluated, it saves a as the value for a1. Later, when the
ApplyClosure node is evaluated, the saved value a and the arguments 1 and 2 are provided
to the closure function.

In the Flix implementation, closure conversion occurs after pattern matching has been
compiled. The closure conversion phase traverses the SimplifiedAst, replacing Lambda

nodes with MkClosure nodes and calls to lambda functions with ApplyClosure nodes.
Lambda bodies are recursively converted, since Flix allows nested lambda definitions.

Closure conversion solves the problems with free variables and higher-order functions,
but lambda functions are still defined within the closure, rather than at the top-level.
However, it is now safe to apply lambda lifting:

def f(a) = let g = MkClosure(f1, a) in
h(g, 1, 2)

def h(g1, x, y) = ApplyClosure(g1, x, y)
def f1(a1, x, y) = a1+x+y

The lambda lifting phase traverses the SimplifiedAst while maintaining a map of names
to lambda functions. As each Lambda node is encountered, nested lambda functions are
recursively lifted. Then the phase creates a fresh name for the lambda function, updates
the map, and replaces the Lambda node with a function reference. After the entire AST has
been traversed, the list of top-level definitions is updated with the definitions in the map.
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Higher-Order Functions and Hooks

The closure conversion phase makes two other replacements to support higher-order functions
and hooks. Consider the following example, where g is higher-order function that calls its
first argument with its second argument, but is given a reference to a top-level function:

def f(x) = x + 1
def g(x, y) = ApplyClosure(x, y)
def h() = g(f, 1) // f needs to be a closure

In the function body of g, x is an expression and not a function reference; therefore, it is
called as a closure. However, in the arguments to g, f is a function reference and needs to
be replaced by a MkClosure node:

def f(x) = x + 1
def g(x, y) = ApplyClosure(x, y)
def h() = g(MkClosure(f), 1)

The second replacement occurs when a hook reference is being passed to a higher-order
function. Consider the following example, where f is an external function that takes a
single argument:

def g(x, y) = ApplyClosure(x, y)
def h() = g(f, 1) // f needs to be a closure

This is similar to the first case, except that f is a hook reference rather than function
reference. MkClosure can only take a lambda function or a function reference, so the closure
conversion phase wraps the hook reference inside a lambda function:

def g(x, y) = ApplyClosure(x, y)
def h() = g(λ(z) f(z), 1)

Now the newly created lambda function is closure converted

def g(x, y) = ApplyClosure(x, y)
def h() = g(MkClosure(λ(z) f(z)), 1)

and then lifted:

def g(x, y) = ApplyClosure(x, y)
def h() = g(MkClosure(h1, 1)
def h1(z) = f(z)

These two replacements complete the implementation of higher-order functions in Flix,
without any additional effort from the user programmer.
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3.1.3 Variable Numbering

At run time, each JVM method stores its local variables in the local variable array, with
indices starting from zero. The JVM provides bytecode instructions for storing variables
from the operand stack and loading variables onto the operand stack. Each entry in the
variable array stores a 32-bit value, and to store 64-bit values, the JVM uses two adjacent
entries in the array. For instance, a long referenced by the index n is stored in the entries
indexed by n and n ` 1. The JVM also uses the local variable array to pass arguments:
starting from zero, entries in the local variable array are initialized to argument values.
Subsequent entries are then used for local variables.

Variable numbering is the final phase applied to the SimplifiedAst, before constructing
the ExecutableAst. This phase assigns indices to local variables in the AST, so the code
generator can use these indices to emit variable stores and loads. The interpreter ignores
these indices, since it references variables by their names.

The variable numbering phase has a straightforward implementation. It traverses the
AST, maintaining a map of variable names to indices, as well as a counter for the next
index to use. The traversal assigns indices to arguments first, from left to right, and then
local variables (defined in let-bindings) in order of appearance. The map is updated and
the counter incremented for each variable definition. For values of type long and double,
which require two entries in the array, the counter is incremented twice. When a variable is
referenced, the appropriate index is looked up from the map.

The type checking phase guarantees that each variable is defined before use. However,
variable shadowing is permitted. Consider the following, where the subscripts represent
indices assigned by the variable numbering phase, and are not part of the source program:

1 let x0 = 10 in
2 let x1 = x0 + 15 in
3 x1 // value is 25

The example contains two definitions for the variable x, one in each let-binding. On line 2,
x0 is bound in the outer let-binding on line 1 and has the value 10. Evaluating x0 + 15

returns 25, which is bound to the new definition x1, and hides the previous definition x0.
Thus, on line 3, x1 has value 25.

Flix does not allow mutation or sequencing, so once a variable has been shadowed, it can
never be referenced again. Therefore, the variable numbering phase can naïvely overwrite
indices in its map. In the above example, the phase first assigns the index 0 to x, but upon
reaching the definition on line 2, it reassigns the index 1 to x.
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3.2 Interpreting the AST

The interpreter back-end for Flix consumes an ExecutableAst. Much of the implementation
is straightforward, like an interpreter for a lambda calculus extended with booleans and
integers [63]. It traverses the expression AST, recursively evaluating subexpressions as
needed, while maintaining an environment map of names to values. The interpreter updates
the environment when a variable is defined, and reads from it when a variable is referenced.
Like most implementations, the Flix interpreter uses an environment to implement variables,
instead of the more costly approach of substitutions, as defined in the lambda calculus
semantics [2]. The interpreter also maintains a reference to the AST root so it can reference
top-level definitions.

The Flix language supports more than just boolean and integer values. It also supports
the unit value, characters, single- and double-precision floating point numbers, strings, tags,
and tuples. Furthermore, Flix integers can have 8, 16, 32, 64, or an arbitrary number of
bits. Therefore, the interpreter must also support these different values and types. Most of
the types can be represented by classes in the Java standard library, but unit, tags, and
tuples are represented by classes defined by the Flix run time.

Besides built-in unary and binary expressions, Flix also supports let-bindings, if-
expressions, and pattern matching. Let-bindings and if-expressions are implemented
directly, instead of desugaring let-bindings into lambda functions and applications. Pattern
matching is not directly implemented; instead, pattern matching is compiled into lower-level
primitives, as discussed in Section 3.1.1. The interpreter must then support the CheckTag,
GetTagValue, and GetTupleIndex primitives.

A function call node in the AST contains a function reference, as well as a list of
argument expressions. The interpreter simply evaluates the arguments from left to right,
looks up the function reference from the top-level definitions, copies the environment map,
extends the copied map with new bindings for the arguments, and then evaluates the
function body with the new environment.

As discussed in Section 3.1.2, lambda functions are converted into closures, so the
interpreter only needs to implement closure creation and closure calls. When the inter-
preter encounters a MkClosure node, it initializes a closure object with a reference to the
implementing function and a list of the captured values. The MkClosure node contains
the function reference as well as the names of the variables to capture. When a closure
is called with arguments, the interpreter evaluates the arguments, and then looks up and
calls the implementing function. The arguments to the implementing function are created
by prepending the captured values to the closure argument values.
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Finally, the interpreter must implement calls to external functions. An external function
is represented as a Hook node in the AST, and contains an object implementing the external
function. The function object can implement the Invokable or InvokableUnsafe interfaces,
depending on whether the user prefers safety or performance. To implement the call, the
interpreter evaluates the argument expressions and applies their values to the function
object. If the function object implements the Invokable interface, then the interpreter
must also wrap the arguments as IValues and unwrap the return value.

3.3 Generating JVM Bytecode

The code generator back-end is the default implementation for the functional language
because it has better performance compared to the interpreter back-end. The code generator
consumes an ExecutableAst and produces JVM bytecode [51] that can be immediately
loaded and executed. Flix uses the ASM library [14] to emit bytecode, which is the same
library used by the Scala 2.12 back-end [22, 29].

ASM simplifies the bytecode generation process, since it takes care of many tedious
details. For instance, ASM will automatically manage the constant pool, and can also
compute each method’s local variable array size and maximum operand stack height. All
of this information must be embedded in the bytecode class file. ASM can also compute
stack map frames, which are required metadata for the JVM bytecode verifier. Flix could
manually compute this information, but this would add greater complexity to the back-end.

Emitting bytecode for most expressions is straightforward, since all operands and
intermediate values are stored on the operand stack. For example, to generate code that
adds two integer expressions exp1 and exp2, the code generator first emits code for exp1,
then for exp2, and then generates the IADD instruction—the I prefix indicates that the
operands are 32-bit integers. At run time, the code for exp1 is evaluated and its result is
placed on the stack, and the same happens for exp2. Then IADD is evaluated, instructing
the JVM to pop two 32-bit integers from the stack, add them, and then place the result
back onto the stack.

The subsections below discuss code generation in further detail. The subsections include
the organization of bytecode and how it is loaded and executed (3.3.1), how Flix values are
implemented and represented at run time (3.3.2), integer semantics and how unary and
binary expressions are compiled (3.3.3), and finally, the implementation of function, closure,
and hook calls (3.3.4).
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3.3.1 Organizing, Loading, and Executing Bytecode

Each Flix function is compiled as a static JVM method, and namespaces in Flix directly
map to JVM packages and classes. For instance, A.B.C/f() is the fully qualified name
for the function f, defined in the namespace A.B.C. The function is compiled to the static
JVM method with fully qualified name A.B.C.f(), where f() is a static method defined
within the class C, located within the package A.B. Flix constants are compiled as zero
argument static methods; the implementation does not use fields. This avoids the need
for initialization, and allows the run time to defer evaluation of error values. Finally, Flix
variables within a function are implemented as local variables of a JVM method. Variables
are accessed by the bytecode instructions xSTORE and xLOAD, where x is the prefix indicating
the type of value to access. For example, I is the prefix for integer values.

The code generator produces bytecode one class at a time. Therefore, before code
generation, all functions need to be grouped by their destination classes. To emit bytecode
for a particular class, the code generator requires the fully qualified name of the target
class, a list of Flix functions to compile, a map of function declarations, and a map of
functional interfaces. The function declarations represent the functions and their types
in the entire Flix program, and are needed since calling a function requires its full type
signature. The functional interfaces represent the closures in the entire Flix program, and
the implementation is discussed in Section 3.3.4.

Once a class has been emitted, the Flix implementation uses a Java ClassLoader to
dynamically load it. A new instance of the class loader is created for each compilation of
a Flix program, allowing multiple run-time instances of the same Flix program to exist.
The class loader returns a reflection Class object, and each of the methods can be accessed
as reflection Method objects. Flix extracts these Method objects and stores them on the
AST, so that each function is implemented by both an expression subtree and a Method

representing generated bytecode. The class loader also cooperates with garbage collection:
if it is garbage collected, the classes are unloaded. A Flix AST references Method objects,
which indirectly reference the class loader. Since there are no other references to the class
loader, once the AST is garbage collected, the class loader will also be collected, which
causes the classes to be unloaded.

When a Flix function is called, if there is no Method object, then the AST is evaluated
by the interpreter. Otherwise, the Method is called with its invoke method. Since the
invoke method must take boxed generic arguments, it will automatically unbox arguments
and box return values when calling the underlying bytecode method. This allows Flix to
generate methods that take and return primitive types.
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Table 3.1: Flix types and their corresponding JVM types.

Flix type JVM type
Primitive Reference

Unit Value.Unit

Bool boolean java.lang.Boolean

Char char java.lang.Chaacter

Float32 float java.lang.Float

Float64 double java.lang.Double

Int8 byte java.lang.Byte

Int16 short java.lang.Short

Int32 int java.lang.Integer

Int64 long java.lang.Long

BigInt java.math.BigInteger

Str java.lang.String

Native java.lang.Object

Tag Value.Tag

Tuple Value.Tuple

Lambda functional interface

3.3.2 Representing Flix Values

To avoid unnecessary allocations, Flix uses primitive values whenever possible. For example,
a Flix Bool is represented as a JVM boolean, except for some cases when it must be boxed
as a java.lang.Boolean. Some Flix values cannot be represented with primitive types,
and so use reference types defined by the Java standard library or Flix. For instance, a Flix
Str is represented as a java.lang.String, while a Flix tag is represented as a Value.Tag.
Table 3.1 describes the mapping between Flix types and JVM types.

Literals are compiled by generating code that directly loads a constant onto the operand
stack, or by generating code that explicitly constructs an object. For example, the literal
true is compiled as an ICONST_1 instruction, which instructs the JVM to push the value 1

onto the operand stack. The JVM represents true as the integer 1 and false as the
integer 0. Similarly, a string value is compiled into the constant pool and then loaded at
run time. On the other hand, a BigInt value is compiled as code that explicitly constructs
a java.math.BigInteger object.

For integer values, the process is more complicated. To reduce code size, the JVM
provides instructions for loading different sizes of integers. For example, ICONST_1 is an
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instruction that loads the constant 1 at run time, and requires only a single byte. There
are similar instructions for the values -1 to 5, inclusive. For larger values, the BIPUSH

instruction takes an 8-bit integer (byte) argument and loads it onto the operand stack at
run time. This requires two bytes of instruction code. Similarly, SIPUSH takes a 16-bit
integer (short) argument and loads it at run time, requiring three bytes of instruction code.
Integers that require more than 16 bits must be compiled into the constant pool.

Tag and tuple values are represented by classes defined by Flix. Furthermore, they are
compound values: a tag contains a single inner value, while a tuple contains an array of
values. A tag is represented by the Value.Tag class, and can be constructed by calling
the helper method Value.mkTag with the tag name and the inner value. Similarly, a tuple
is represented by the Value.Tuple class. However, constructing a Value.Tuple involves
allocating an array and initializing each of its elements.

Since tags and tuples are generic in the values they can contain, Flix uses type erasure,
representing inner values as java.lang.Object values. Thus, primitive values need to be
boxed when constructing tags and tuples, and unboxed when they are extracted. Reference
values do not need to be boxed, but they need to be cast to their proper types when
extracted. All of this is done automatically at run time, since the code generator emits the
necessary boxing and unboxing code.

3.3.3 Implementing Unary and Binary Expressions

Unary and binary expressions in Flix can be classified as arithmetic, bitwise, comparison,
or logical expressions. Each of the types of expressions have their own implementation
details. However, arithmetic and bitwise expressions require extra consideration because
they manipulate integer values, and the Flix and JVM semantics are slightly different.

Both Flix and the JVM support 8-bit, 16-bit, 32-bit, and 64-bit signed integers, repre-
senting them in signed two’s complement notation. An integer with N bits can represent
values from ´2

N´1 to 2
N´1 ´ 1, inclusive, where a positive number x is represented as itself,

and a negative number y is represented as 2
N ´ y. However, on the JVM, 8-bit and 16-bit

integers are sign extended to 32 bits, effectively changing their types to 32-bit integers.
Thus, arithmetic expressions on 8-bit and 16-bit integers are actually arithmetic expressions
on 32-bit integers, and return 32-bit integers. The following Java method will not compile
because it returns an int, which does not match the declared return type of byte:

public static byte f(byte x, byte y) {
return x + y; // compilation error: ‘x + y‘ has type int, not byte

}
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Flix is different in this respect. An arithmetic expression in Flix returns an integer with the
same number of bits as its operands, because 8-bit and 16-bit integers behave as if there is
no sign extension. (In practice, they are sign extended because they have to be represented
on the JVM.) This is an intentional design decision of Flix to ensure consistency, as integer
values will always remain the type they were originally declared as.

The different semantics will produce different values if overflow occurs; in other words, if
there is an insufficient number of bits to represent the result of an operation. For both the
JVM and Flix, if an operation on 32-bit (or 64-bit) integers overflows, the result is taken to
be the 32 (or 64) low-order bits of the mathematical result, performed in two’s complement
notation with a sufficient number of bits. Operations involving 8-bit and 16-bit integers
will never overflow on the JVM, because they are sign extended to 32 bits. However, in
Flix, operations behave as if there is no sign extension, so overflow is possible. A user who
is concerned with overflow should consider using an integer type with more bits, or even
the BigInt type which has arbitrary precision.

As an example of overflow, consider adding two 8-bit integers with value 64. With JVM
semantics, the result is the 32-bit value 128. However, with Flix semantics, the result is
the 8-bit value -128 because of overflow. (Since the operation takes place on the JVM, the
result will be sign extended to 32 bits.) The implementation task, then, is to generate code
that follows Flix semantics while using operations that follow JVM semantics.

The subsections below discuss the implementation of arithmetic, bitwise, comparison,
and logical expressions. While the comparison and logical expressions do not need to
account for the different integer semantics between Flix and the JVM, they have other
issues to consider. The discussion will use the notation

00000000_00000000_00000000_000000002

to represent binary, with bits grouped by eight, and the notation

9910

to represent decimal.

Arithmetic Expressions

Flix supports the following arithmetic operations: unary minus and plus, addition, subtrac-
tion, multiplication, division, modulo, and exponentiation. Exponentiation is implemented
as a call to the Java standard library. The library function java.lang.Math.pow requires
operands to be cast to double and the result to be cast from double.
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The other arithmetic operations are implemented in bytecode; however, the result must
be consistent with Flix semantics. Specifically, values should behave as if they were not sign
extended, and operations should return values of the same type as the operands. Consider
the unary minus operation and the 8-bit operand

100000002 = -12810

The mathematical result is 12810, which cannot be represented in 8 bits. Following Flix
semantics, the result is the 8 low-order bits of the mathematical result represented in two’s
complement notation, which happens to be

100000002 = -12810

However, on the JVM, the operand is sign extended to

11111111_11111111_11111111_100000002 = -12810

Applying unary minus, the result is

00000000_00000000_00000000_100000002 = 12810

which is the correct mathematical result, but the incorrect result for an 8-bit integer. To
obtain the correct representation, the code generator emits the I2B instruction, which will
truncate the value to 8 bits and then sign extend it. This gives the correct representation:

11111111_11111111_11111111_100000002 = -12810

For 16-bit integers, the result must be truncated to 16 bits and then sign extended. Note
that the interpreter must also handle the different integer semantics, which is done by
casting results to byte (to truncate to 8 bits) or to short (to truncate to 16 bits).

The process is the same for binary arithmetic operations: results need to be truncated
and then sign extended. Adding two 8-bit integers should return an 8-bit integer, even
though it is sign extended to 32 bits. Consider adding two 8-bit integers with value 64:

010000002 = 6410

+ 010000002 = 6410

----------------------

100000002 = -12810

The mathematical result is 12810, but with only 8 bits, the representation requires the
result to be -12810. However, on the JVM, the 8-bit integers are sign extended to 32-bit
integers, which gives the following result:
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00000000_00000000_00000000_010000002 = 6410

+ 00000000_00000000_00000000_010000002 = 6410

-------------------------------------------------

00000000_00000000_00000000_100000002 = 12810

Again, the code generator must emit code that truncates and sign extends the result, to
give the correct representation:

11111111_11111111_11111111_100000002 = -12810

Bitwise Expressions

Flix supports the following bitwise operations: complement, and, or, exclusive-or, left shift,
and right shift. Most of these expressions do not require any truncation, because bitwise
expressions operate on bits rather than the value represented by those bits.

A complement operation is implemented as an exclusive-or, since there is no bytecode
instruction that inverts the bits of a value. However, the complement of an N -bit value is
the same as the exclusive-or of that value and a second value of N 1s. For instance, the
complement of

110000112

is

001111002

and can be implemented as an exclusive-or:

110000112

ˆ 111111112

--------------

001111002

On the JVM, the operands are sign extended to 32 bits, but the 8 low-order bits are the
same. Truncating and sign extending the result makes no difference. Consider the previous
example, but with the operands sign extended:

11111111_11111111_11111111_110000112

ˆ 11111111_11111111_11111111_111111112

-----------------------------------------

00000000_00000000_00000000_001111002
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The bitwise-and and bitwise-or operations also do not require any additional truncations or
sign extensions. Consider, for example

111100002

& 110000002

--------------

110000002

As with exclusive-or, the operands are sign extended on the JVM, but the 8 low-order
bits remain the same. Truncating and sign extending the result also has no effect, as
demonstrated below:

11111111_11111111_11111111_111100002

& 11111111_11111111_11111111_110000002

-----------------------------------------

11111111_11111111_11111111_110000002

However, the bitwise left shift operation requires truncation and sign extension, because
the operation affects the high-order bits. Consider the following example, where x and y

represent unknown values:

x000y0002

<< 000001002

--------------

y00000002

Due to sign extension, the result is represented as

yyyyyyyy_yyyyyyyy_yyyyyyyy_y00000002

However, on the JVM, all operands are sign extended to 32 bits, giving the actual result:

xxxxxxxx_xxxxxxxx_xxxxxxxx_x000y0002

<< 00000000_00000000_00000000_000001002

-----------------------------------------

xxxxxxxx_xxxxxxxx_xxxxx000_y00000002

The code generator must emit code to truncate and sign extend the result, to achieve the
correct representation. Note that the value for x was irrelevant; however, the value for y

affects the sign extension.

Finally, the bitwise right shift does not require any truncation for the result. Consider,
for instance
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x00000002

>> 000001002

--------------

xxxxx0002

On the JVM, the operands are sign extended, giving:

xxxxxxxx_xxxxxxxx_xxxxxxxx_x00000002

>> 00000000_00000000_00000000_000001002

-----------------------------------------

xxxxxxxx_xxxxxxxx_xxxxxxxx_xxxxx0002

In this example, the values of the high-order bits are completely determined by the value of
x. Therefore, it is not necessary to truncate or sign extend the result.

Comparison Expressions

In Flix, integers, floating point numbers, and characters support all six comparison opera-
tors: equal (EQ), not equal (NE), greater than (GT), greater than or equal (GE), less than
(LT), and less than or equal (LE). However, unit, booleans, strings, tags, and tuples only
support equality (EQ and NE). Primitive values are compared by using the JVM comparison
instructions, while reference values are compared by emitting a call to a method, such as
Object.equals.

Comparisons of primitive values are implemented as a branch on the negated condition:
if the negated condition succeeds (in other words, if the original condition fails), control
jumps to the false branch and returns 0. Otherwise, control continues to the true branch
and returns 1. The JVM provides different comparison instructions depending on the
involved types. Booleans, 8-bit integers, 16-bit integers, and characters are represented as
32-bit integers, so they use the integer comparison instructions. These instructions have
the form IF_ICMPyy where yy is one of the six comparison operators. IF_ICMPyy takes a
label as an argument and jumps to it if the comparison succeeds.

Comparing 64-bit integers requires a pair of instructions, LCMP and IFyy, which are
used together to achieve the same effect as IF_ICMPyy for 32-bit integers. IFyy compares
the result of LCMP with 0 and jumps to the given label if the comparison succeeds. In
pseudocode, LCMP compares the values v1 and v2 with the following semantics:
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if (v1 > v2) 1
else if (v1 == v2) 0
else if (v1 < v2) ´1

Finally, to compare floating point numbers, the JVM provides FCMPG and FCMPL for single-
precision floating point numbers, and DCMPG and DCMPL for double-precision floating point
numbers. These instructions are similar to LCMP, except that the G and L suffix affects how
NaN is handled—all comparisons involving NaN must fail.

Logical Expressions

Flix supports the following logical operators: not, and, or, implication, and biconditional.
Logical expressions are the simplest of the unary and binary expressions to implement.
However, like Java, logical expressions use short-circuit evaluation. The second expression
of a logical-and is only evaluated if the first expression evaluates to true, and the second
expression of a logical-or is only evaluated if the first expression evaluates to false.

The bytecode instructions do not have direct support for short-circuit evaluation, so the
expression EXP1 && EXP2 is compiled as

if (EXP1) EXP2 else 0

and the expression EXP1 || EXP2 is compiled as

if (EXP1) 1 else EXP2

The implication (==>) and biconditional (<==>) operators are syntactic sugar introduced to
Flix. The code generator simply rewrites them before emitting code.

EXP1 ==> EXP2

is rewritten to

!EXP1 || EXP2

and

EXP1 <==> EXP2

is rewritten to

EXP1 == EXP2
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3.3.4 Calling Functions, Closures, and Hooks

The target f of a call can be a Flix function, closure, or a hook. The simplest case is when
f is a function reference. The code generator looks up f in the declarations map to get
its full type signature, emits code to evaluate the arguments of the call, and then emits a
static method invocation instruction. The method invocation requires both the name and
full type signature of the target, and assumes argument values are on the operand stack.
The implementation is more complicated for closure and hook calls, and is discussed below.

Calling Closures

One approach for implementing closures is to use anonymous classes. Each closure is
represented by a class, with fields for captured variables and a method that implements
the closure function. At run time, a closure object is created by calling the constructor
with the captured variables, and a closure is called by invoking its method. However, this
approach increases code size, as every lambda expression requires an anonymous class.
An alternate approach, taken by Java 8 and Scala 2.12 [22, 31], is to use invokedynamic

to create closure objects [67]. A closure object implements a functional interface, which
declares a single abstract method representing the implementation of the closure function.
A closure is called by invoking its interface method.

An invokedynamic instruction represents a dynamic call site, which allows the target
method to be determined at run time. Initially, a dynamic call site is unlinked, meaning
the target method is unknown. The JVM will perform linking by calling the bootstrap
method specified by the invokedynamic instruction. Linking happens just before the first
invocation of a dynamic call site, and subsequent invocations will skip the bootstrap method
call and directly call the linked method.

When the code generator encounters a MkClosure node, it emits an invokedynamic

call, with java.lang.invoke.LambdaMetafactory.metafactory as the bootstrap method.
metafactory takes both static and dynamic arguments. The static arguments represent the
functional interface implemented by the closure and a method handle for the implementing
method of the closure, while the dynamic arguments represent the captured values. When the
closure is created for the first time, the metafactory generates bytecode for an anonymous
class that implements the functional interface, links its constructor to the dynamic call
site, and then calls the constructor with the values of the captured variables. Subsequent
creations of that particular closure will bypass linking and directly call the constructor. To
call a closure, the code generator emits code for an interface invocation. The closure will
then call its implementing method with the captured variables and closure arguments.
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Each closure object implements a functional interface and is invoked through that
interface. However, the interface must be provided by the implementation. The Java
standard library provides a small collection of specialized interfaces, while at the opposite
extreme, the Scala standard library provides a much larger collection of generic interfaces.
The Java interfaces are too limited, while the Scala interfaces are too general, so Flix takes
its own approach. Specifically, the code generator creates only the functional interfaces
that are required. This avoids generics (and boxing and unboxing), since the interfaces are
specialized to the closure types that appear in the program.

The functional interfaces are generated shortly before methods are compiled. A visitor
traverses the entire AST, collects the type signatures of every closure used in the program,
and then generates a name for each unique type. This creates the functional interfaces map,
which will later be used in code generation. Next, the code generator compiles an interface
for each name. Each interface is annotated with @FunctionalInterface and declares a
single abstract method apply, with the type signature of the closure it represents. Once
all functional interfaces have been generated, the code generator can compile the methods.
To emit code for a closure call, the code generator will look up the appropriate functional
interface from the map and then emit the interface call to apply.

Calling Hooks

The Flix run-time object maintains a map of all hooks and provides the instance methods
invoke and invokeUnsafe for calling external functions. These methods are part of the
public API, but their main purpose is to implement hook calls in the generated bytecode.
Both invoke and invokeUnsafe take a string representing the name of the hook to call, as
well as an array representing the argument values. Argument values to invoke need to be
wrapped as IValues, and the return value needs to be unwrapped.

Because invoke and invokeUnsafe are instance methods, the Flix run-time object must
be available to the generated code. Therefore, each bytecode class is generated with a static
field that refers to the Flix object. The field is initialized to null, but after the class is
dynamically loaded, the Flix implementation sets the field to itself.
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Chapter 4

Evaluation

This chapter discusses the testing and evaluation of the Flix back-ends. The first group
of tests ensures correctness of the interpreter and code generator (4.1), while the second
group evaluates the performance of the back-ends (4.2).

4.1 Testing for Correctness

The first group of tests, mostly implemented in the ScalaTest framework [79], ensures
correctness of all aspects of the implementation. Each test is executed with the interpreter
and code generator, and results are compared against an expected result. Currently, there
are over 500 tests for the functional language implementation.

Each test is written as a small but complete Flix program, thus testing the entire
front-end—the parsing, weeding, name resolution, and type checking phases—as well as
the back-end. Originally, tests would manually construct ASTs, but this was very tedious
and brittle, as the ExecutableAst was still evolving. It was also possible to construct
invalid ASTs, leading to unexpected results. The current strategy of writing complete Flix
programs provides the benefit of testing the front-end, is easier to write and maintain, and
guarantees that all input to the back-end is valid.

A larger and more realistic test is implemented outside the ScalaTest framework. This
test is a Flix implementation of the Strong Update analysis, a points-to analysis for C
programs [50]. The Strong Update analysis achieves better precision by propagating
singleton sets flow-sensitively, while maintaining efficiency by propagating larger sets flow-
insensitively. The test runner is a custom Ruby script that compares the Flix implementation
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of the Strong Update analysis (both interpreted and compiled) to a Datalog implementation,
which is run on the DLV solver [49]. The analysis requires a constant propagation lattice,
which can be directly expressed in Flix. However, because Datalog does not support user-
defined lattices, the Datalog implementation must embed the lattice in a power set, which
is expensive. The script uses the SPEC CPU2000 and CPU2006 integer benchmarks [75] as
analysis inputs, and ensures both implementations return result sets of the same size. The
script only checks the size of the result sets and not their contents, since it is very unlikely
that the two implementations return sets of the same size but with different contents.

4.2 Benchmarking for Performance

The remaining tests evaluate the performance of the interpreter and the generated code,
and can be grouped into three categories. The first category consists of purely functional
toy benchmarks. These programs do not require the Flix solver and can be compared with
implementations in other languages. The second category includes toy benchmarks that use
both functional and logic code, and therefore require the Flix solver. As the solver would
require significant effort to re-implement in other languages, these benchmarks only compare
the interpreter and code generator back-ends, and not other implementations. Finally, the
last category consists of a real-world static analysis that contains both functional and logic
code. All evaluation code is available on GitHub1.

The remainder of this section discusses the different benchmarks (4.2.1), the testing
environment and implementation languages (4.2.2), and the results (4.2.3).

4.2.1 Description of Benchmarks

There are six performance benchmarks. fib, nbody, and pidigits are purely functional
benchmarks; matrixmult and shortestpaths contain both functional and logic code; and
strongupdate is a real-world static analysis. The benchmarks are described below.

fib This is a naïve implementation of the Fibonacci function, with exponential running
time. For a given input n, it computes the nth Fibonacci number.

nbody Adapted from the Computer Language Benchmarks Game [1], this program is an
N -body simulation. For the given input m, it models the dynamics of the Sun and
the four gas giants for m iterations.

1https://github.com/mhyee/flix-experiments
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pidigits Another program adapted from the Computer Language Benchmarks Game,
this benchmark computes the first n digits of π, for a given n, using an unbounded
“spigot” algorithm [30]. The implementation requires arbitrary-precision arithmetic.

matrixmult This program multiplies two randomly generated n ˆ n matrices, using the
naïve algorithm with cubic running time. The implementation requires the Flix solver,
as it models matrices with relations and lattices. Although the model is imperfect, it is
sufficient to implement matrix multiplication. This benchmark was only implemented
in Flix, as porting the solver was not feasible for the evaluation.

shortestpaths This benchmark is based on the Floyd-Warshall algorithm for all-pairs
shortest paths [27]. However, it computes the length of the shortest path, rather
than the path itself. The input to the benchmark is a random graph of n vertices.
The edges of the graph are modelled as a relation, and the distances are modelled
as a lattice over the natural numbers. Like matrixmult, this benchmark was only
implemented in Flix.

strongupdate The Strong Update analysis is a points-to analysis for C programs, as de-
scribed previously. The Flix implementation is compared to a Datalog implementation,
as well as a handwritten C++ implementation.

4.2.2 Testing Environment and Languages

With one exception, all benchmarks were performed on a desktop workstation with 16 GB
of RAM and an AMD FX-8320 processor clocked at 3.50 GHz, running Ubuntu 12.04.5 LTS.
The exception is the C++ implementation of the Strong Update analysis, whose results
were taken from the original Strong Update paper. The other tests were managed by a
custom Ruby script, which ran each benchmark individually and recorded the average
execution time over 20 trials. The script also monitored the programs, terminating any run
that exceeded the 15 minute timeout, and properly reported any errors that would occur.

The benchmarks that contain only functional code (fib, nbody, and pidigits) were
implemented in Flix, Ruby, Scala, Java, and C++. Each program was written in an
idiomatic style, with no attempt to optimize the programs or make them as similar to the
Flix versions as possible. A brief discussion of each language and implementation follows.

Flix As a pure functional language, Flix has certain features that limit its performance. For
example, without mutation, all data structures must be copied rather than updated in
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place. Furthermore, iteration is implemented as recursion, but tail call optimization
is not yet implemented. Both the interpreter and generated bytecode were run on the
Java HotSpotTM 64-Bit Server VM. The JVM was configured to have a maximum
heap size of 8 GB and a thread stack size of 128 MB. Arbitrary-precision integers are
built into the language and implemented using the Java standard library.

Ruby The benchmarks were implemented in Ruby 2.3.1 and run on the default YARV
bytecode interpreter [68]. The benchmarks use mutation and iteration with while
loops. Arbitrary-precision integers are provided by the standard library, which uses
the GNU Multiple Precision Arithmetic Library (GMP) [28].

Scala The Scala [61] benchmarks were written in Scala 2.11.8 and run on the Java
HotSpotTM 64-Bit Server VM, which was configured with a maximum heap size
of 8 GB and a thread stack size of 32 MB. The programs were written in a pure
functional style that resembles Flix, rather than an imperative style that resembles
Java. In other words, all data structures are immutable and must be copied, and
the benchmarks use recursion. However, tail call optimization was not disabled.
Arbitrary-precision integers are provided by the Java standard library.

Java The Java [33] benchmarks were implemented in Java 1.8 and run on the Java
HotSpotTM 64-Bit Server VM, which was configured with a maximum heap size of
8 GB and a thread stack size of 32 MB. The programs were implemented in an
object-oriented style, allowing mutation and while loops. Arbitrary-precision integers
are provided by the standard library.

C++ The benchmarks were implemented in C++14 [39] and compiled under GCC 6.1.0
with the highest optimization level (-O3). Like the Java programs, the C++ programs
were implemented in an object-oriented style, allowing mutation and while loops.
Arbitrary-precision integers are provided by GMP.

4.2.3 Discussion of Results

Overall, the generated bytecode for Flix runs faster than the interpreter. The speedup is
considerable for the fib and nbody benchmarks, and minimal for the pidigits, matrixmult,
and shortestpaths benchmarks. Furthermore, as demonstrated by the graphs, Flix is
able to scale with the other languages. Although C++ is easily the fastest, compiled
Flix is comparable to Scala and Java for fib and pidigits. For strongupdate, both the
interpreted and compiled Flix implementations are faster than the Datalog implementation,
though substantially slower than the handwritten C++ implementation.
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Figure 4.1: Time taken to compute the n
th Fibonacci number, in seconds.

The results of the fib benchmark are summarized in Figure 4.1 and Table 4.1. On
average, the compiled Flix program is over 250x faster than the interpreted Flix program,
even beating Scala. Since Fibonacci is a very simple function, the generated bytecode
for Flix, Scala, and Java is similar. However, Scala is slower because the program was
written as instance methods of a singleton object, rather than static methods. The Ruby
implementation is slow, though much faster than interpreted Flix, which uses an AST
interpreter instead of a bytecode interpreter. Finally, as expected, C++ is the fastest.

Figure 4.2 and Table 4.2 summarize the nbody benchmark. Here, both Flix implemen-
tations are the slowest, though the compiled version is, on average, 17x faster than the
interpreted version. The nbody benchmark is currently the largest and most complicated
purely functional program written in Flix, and highlights many inefficiencies. For instance,
the lack of tail call optimization increases the stack space requirements, until the program
runs out of memory. In addition, structures in the simulation need to be represented as
tags and tuples, which box their values and increases memory consumption. Furthermore,
maintaining and copying the environment maps in the Flix interpreter adds significant
overhead. These inefficiencies allow Ruby to outperform Flix. Scala and Java are still faster
and have similar performance, though Java is slightly faster. Finally, C++ is the fastest, as
the compiler emits vector instructions to optimize the computations.

41



Table 4.1: Summary of performance results for computing the n
th Fibonacci number. Timeout

means more than 15 minutes.

Ruby Flix Scala Java C++

n Time (s) Interpreted (s) Compiled (s) Time (s) Time (s) Time (s)

35 1.91 17.15 0.07 0.07 0.06 0.05
40 20.81 187.95 0.70 0.75 0.70 0.56
45 231.58 timeout 7.70 8.79 7.75 6.42
50 timeout - 84.98 100.58 85.05 71.08
55 - - timeout timeout timeout 772.95
60 - - - - - timeout

Table 4.2: Summary of performance results for computing m thousand iterations of the N -body
simulation. OOM means out of memory (stack overflow).

m Ruby Flix Scala Java C++

(thousands) Time (s) Interpreted (s) Compiled (s) Time (s) Time (s) Time (s)

16 0.20 14.10 0.63 0.06 0.03 0.01
32 0.40 27.76 1.05 0.11 0.06 0.03
64 0.80 57.95 2.95 0.19 0.12 0.05

128 1.59 116.24 8.86 0.34 0.23 0.10
256 3.20 246.21 29.27 0.62 0.45 0.21
512 6.36 OOM 78.77 1.17 0.89 0.41

1,024 12.76 - OOM 2.31 1.79 0.84

Table 4.3: Summary of performance results for computing the first n thousand digits of π.
Timeout means more than 15 minutes. OOM means out of memory (stack overflow).

n Ruby Flix Scala Java C++

(thousands) Time (s) Interpreted (s) Compiled (s) Time (s) Time (s) Time (s)

4 1.71 1.78 1.53 1.37 1.40 0.21
8 7.17 6.15 5.66 4.97 5.14 0.87

16 30.41 22.50 21.43 20.45 21.11 3.75
32 126.44 93.58 87.24 86.61 83.15 16.14
64 550.68 OOM 371.97 367.24 350.07 79.59

128 timeout - timeout timeout timeout 363.01
256 - - - - - timeout
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Figure 4.2: Time taken to compute m thousand iterations of the N -body simulation, in seconds.

For the pidigits benchmark, C++ is clearly the fastest, but the remaining imple-
mentations have similar performance results. Figure 4.3 and Table 4.3 show that Java
and Scala are very close, though both are slightly faster than compiled Flix. Most of the
computation in pidigits involves arbitrary precision arithmetic, and Java, Scala, and
Flix use the same library (java.math.BigInteger), which explains why the results are
similar. The interpreted Flix program runs out of stack memory, as it does not have tail
call optimization. On the other hand, the compiled Flix program is more memory efficient,
and times out before it can run out of memory. Interestingly, the Ruby bytecode interpreter
was slower than the Flix AST interpreter.

The next two benchmarks, matrixmult and shortestpaths were only implemented in
Flix, since they require the solver. The matrixmult results are summarized in Figure 4.4
and Table 4.4, while the shortestpaths results are summarized in Figure 4.5 and Table 4.5.
Both Flix back-ends performed very similarly, with the generated code being slightly faster
than the interpreted code. The difference is minimal because the functional code has very
little impact on the overall performance—the logic code and solver consume most of the
execution time.
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Table 4.4: Summary of performance results for multiplying two randomly generated n ˆ n

matrices. Timeout means more than 15 minutes.

n Interpreted (s) Compiled (s)

8 0.12 0.09
16 0.25 0.18
32 0.57 0.50
64 2.49 2.02

128 17.00 14.02
256 130.05 106.16
512 timeout timeout

Table 4.5: Summary of performance results for computing the shortest paths in a random graph
of n vertices. Timeout means more than 15 minutes.

n Interpreted (s) Compiled (s)

8 0.20 0.15
16 0.18 0.15
32 0.77 0.65
64 0.99 0.84

128 0.78 0.63
256 15.32 14.29
512 8.97 8.86

1024 30.37 29.89
2048 430.80 426.30
4096 timeout timeout
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Figure 4.3: Time taken to compute the first n thousand digits of π, in seconds.

Finally, strongupdate represents a real-world points-to analysis that one might write
in Flix. The benchmark compares four different implementations of the analysis: one in
Datalog and executed on the DLV solver, an interpreted Flix implementation, a compiled
Flix implementation, and a handwritten C++ implementation. The results for the C++

analyzer were taken from the original Strong Update paper. The SPEC CPU2000 and
CPU2006 integer benchmarks were used as analysis inputs.

The results are summarized in Figure 4.6 and Table 4.6. Both implementations of Flix
are faster than the Datalog implementation, showing that the analysis is more efficient with
user-defined lattices. On average, the interpreted Flix analysis is 3.7x faster than Datalog,
and the generated Flix bytecode is 1.7x faster than the interpreter. However, the C++

implementation is 126x faster than compiled Flix. Note that this difference in speed is
much larger than what could be accounted for by the different testing environments.

The main reason the C++ implementation is faster is that it can significantly reduce
memory usage. Within the analysis, some elements of the lattice occur much more
frequently than others, and the C++ implementation uses a custom data structure to
implicitly represent these common elements. However, in Flix, the elements are explicitly
stored, which substantially increases memory consumption.
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Table 4.6: Summary of performance results for the Strong Update analysis. Timeout means
more than 15 minutes.

Benchmark DLV Flix C++

Program kSLOC Input Facts Time (s) Interpreted (s) Compiled (s) Time (s)

470.lbm 1.2 1,205 1.90 1.89 1.25 0.05
181.mcf 2.5 3,377 31.32 7.26 4.27 0.08
429.mcf 2.7 3,392 32.26 7.64 4.40 0.09
256.bzip2 4.7 5,017 5.97 3.68 2.48 0.09
462.libquantum 4.4 6,196 33.02 13.33 7.75 0.14
164.gzip 8.6 9,259 135.66 26.45 14.52 0.14
401.bzip2 8.3 11,844 702.95 46.28 25.79 0.30
458.sjeng 13.9 20,154 430.49 75.36 36.62 0.27
433.milc 15.0 22,147 timeout 222.43 125.24 0.45
175.vpr 17.8 25,977 - 238.69 139.99 0.54
186.crafty 21.2 32,189 - 201.28 101.82 0.41
197.parser 11.4 32,606 - timeout 818.44 0.92
482.sphinx3 25.1 42,736 - - 576.86 1.06
300.twolf 20.5 44,041 - - 320.86 1.25
456.hmmer 36.0 68,384 - - timeout 2.22
464.h264ref 51.6 89,898 - - - 3.41

seven more benchmarks
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Chapter 5

Related Work

This chapter explores work related to Flix and functional language implementations. It
discusses traditional static analysis frameworks (5.1), Datalog, static analysis tools that use
Datalog, and languages related to Flix (5.2), and finally, implementation techniques (5.3).

5.1 Static Analysis Frameworks

There has been much prior work in designing static analysis frameworks. The program
analyzer generator PAG takes a high-level specification of data types, lattices, and transfer
functions, and generates C code for an analyzer [56]. Soot is a framework for analyzing
Java bytecode and has been widely used for other tools and front-ends [78]. The T. J.
Watson Libraries for Analysis (WALA), implemented in Java, are tools for static program
analysis [25]. They support Java and JavaScript, and features include class hierarchy analysis,
points-to analysis, and call graph construction. Hoopl is a library for implementing dataflow
analyses and transformations, written in Haskell [64]. Frama-C is a software analysis
platform for C programs, written in OCaml [19]. The OPAL framework, implemented in
Scala, is a software product line for creating Java bytecode analyzers [23].

Many of these frameworks include implementations of specific analyses, which could
be written in Flix rather than a general-purpose language. This would make it easier to
understand and ensure correctness of the analysis, and to separate the specification of
the analysis from the implementation of the fixed-point algorithm. Furthermore, many of
these frameworks make certain assumptions about the analysis being implemented, such as
requiring a control-flow graph, but Flix is general and solves least fixed point problems.
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5.2 Datalog

Datalog is a declarative programming language with roots in logic programming and
deductive databases. It is a syntactic subset of Prolog and can be used as a query language
for relational databases; however, unlike core SQL, Datalog queries support recursion. Ceri
et al. [16] provide a thorough introduction to Datalog, which discusses its syntax and
semantics and shows how Datalog relates to the relational algebra. Huang et al. [36] provide
a more succinct tutorial, and also suggest that there is renewed interest in using Datalog
for a variety of applications, including data integration, networking, and program analysis.

Many static analysis tools involve Datalog. bddbddb is a Datalog implementation
that represents relations as binary decision diagrams, and has been used for context-
sensitive pointer analysis [47, 80]. CodeQuest is a tool for querying source code that
compiles Datalog to SQL [34], and QL is an object-oriented query language that compiles to
Datalog [12]. Doop is a Datalog framework for scalable and precise context-sensitive points-
to analyses [13, 71, 72]. Alpuente et al. [4] describe techniques for efficiently evaluating
Datalog queries, tailored to object-oriented program analysis. Allen et al. [3] introduce a
points-to framework in Datalog that can scale to the OpenJDKTM library. Finally, Soufflé
is a framework that synthesizes C++ analyzers from Datalog specifications [43, 69].

Flix shares some similarities with BloomL, a language for ensuring consistency in
distributed programs [17]. BloomL extends Bloom, a language based on Datalog, with
lattices and monotone functions. While Flix programs compute the minimal model of a
fixed-point problem and terminate, BloomL programs run continuously.

Another similar language is Datafun, a functional language that allows Datalog-style
programming and tracks monotonicity with types [9]. Like Flix, Datafun is more expressive
than Datalog, allowing programmers to write monotone functions. However, while Flix
extends Datalog with lattices and monotone functions, Datafun extends the simply-typed
lambda calculus with sets, monotone functions, fixed points, and semilattice types. Addition-
ally, the logic language of Flix is declarative, like Datalog, but Datafun is not. Furthermore,
although Datafun does not support user-defined lattices, its type system tracks monotonicity
of functions, allowing it to ensure termination of fixed-point computations.

Finally, there have been other multi-paradigm programming languages that are based
on logic programming. Mercury [74] is a purely declarative logic language that is typed and
supports higher-order functions. Oz [60] combines logic, functional, and object-oriented
programming, and Logtalk [59] is an object-oriented logic programming language. These
languages extend Prolog, which is Turing-complete, while Flix extends Datalog, which is
less expressive but can guarantee termination.

50



5.3 Implementation Techniques

Many sources examine how functional languages can be implemented. Reynolds [65]
considers definitional interpreters for a functional call-by-value language with if-expressions,
let-bindings and higher-order functions. However, the interpreters are meant to serve
as definitions of the functional language, rather than implementations, as they sacrifice
efficiency for clarity. Cardelli [15] describes a compiler for ML and includes a simple example
of a pattern matching implementation. Augustsson [10] presents a compiler for Lazy ML, a
lazy and purely functional variant of ML, and provides a brief overview of pattern-matching
compilation and lambda lifting.

Peyton Jones [62] provides a comprehensive discussion on implementing a functional
language, with specific chapters on pattern matching, efficient compilation of pattern match
expressions, and lambda lifting. Appel [5] uses continuation-passing style to implement
a compiler for Standard ML and also discusses closure conversion. Finally, in a separate
textbook, Appel [6] studies compiler fundamentals, and includes a chapter on functional
programming languages, with a section on closure conversion.

The rest of this section explores pattern matching (5.3.1) and lambda functions (5.3.2).

5.3.1 Pattern Matching

Pattern matching is a common feature in functional programming languages, such as
Racket [26], Haskell [37], Standard ML [57], F# [77], and Scala [24], and there have been
proposals to add pattern matching to C++ [73], Java [35, 52, 66], and Go [44]. In addition
to pattern matching in case expressions, as supported by Flix, some languages also allow
pattern matching in function definitions. Parameters are specified as patterns and matched
against function call arguments, allowing the programmer to define multiple implementations
of the same function. Flix does not support this syntax, but the function definitions can
easily be transformed into pattern matching in case expressions [10].

The two main approaches for pattern-matching compilation are backtracking automata
and decision trees. In general, backtracking generates less but slower code, while decision
trees generate faster but more code. Flix takes the former approach. Augustsson [11]
provides the earliest description of pattern-matching compilation, using backtracking, while
Cardelli [15] uses decision trees. Le Fessant and Maranget [48] discuss optimizations to
the backtracking approach, while Maranget [55] studies efficient decision trees. Finally,
Maranget [54] and Isradisaikul and Myers [40] propose improving pattern matching usability
by producing warnings and performing exhaustiveness checks.
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5.3.2 Lambda Functions

While lambda functions are implemented in practically all functional programming languages,
they are less common in mainstream object-oriented languages. However, there is a clear
trend toward using lambda functions in these languages, as support has been added to
C++11 [38, 41] and Java 8 [31, 33].

The term lambda lifting was first used by Johnsson [42], who provides an algorithm and
an attribute grammar. Since then, there have been many variations and approaches to
lambda lifting and closure conversion. Appel and Jim [8] describe a continuation-passing
style code generator that includes a closure converter. Minamide et al. [58] present a closure
conversion algorithm and a closure representation that is type-directed and type-preserving.
Steckler and Wand [76] consider lightweight closure conversion, a situation where some of
the free variables of a function are available at all invocation sites, and therefore do not
need to be bound in a closure.

One important distinction between Flix and these approaches is that the Flix imple-
mentation directly supports closures, and provides a specific data structure for closures.
Captured values are implicitly stored within this structure and passed to closure functions
as ordinary arguments. In contrast, the related approaches consider the more general case
where implementations do not have specific closure support. Captured variables are stored
in a general structure like a map or tuple, which is explicitly passed as an argument to
closure functions.

There has also been much discussion on optimizing closure implementations. Appel
and Jim [7] discuss old and new closure representation strategies and benchmark them for
performance. Goldberg and Park [32] describe an escape analysis that determines when
closures can be stack-allocated instead of heap-allocated. Shao and Appel [70] present
an algorithm for closure conversion that is both efficient and safe for space. Dragoş [20]
discusses specific optimizations for the Scala language. Finally, Keep et al. [46] describe a
series of optimizations that do not incur any overhead.

Some of these techniques could be applied to Flix, which does not currently optimize
its closure implementation. However, the closure representation cannot be changed, since
it is provided by the Java standard library—the use of invokedynamic allows the closure
representation to be defined at run time. On the other hand, any improvements to the Java
closure representation will automatically benefit Flix.
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Chapter 6

Future Work

The Flix language is still evolving. As new features are added, the implementation will
need to be updated. Syntactic changes can be isolated to the front-end, or may require
additional AST transformations. Some features may involve only the logic language, leaving
the functional language back-ends unchanged. However, changes to the functional language
will need to be implemented twice, in both the interpreter and code generator. The hope
is that new features can be easily prototyped and tested in the interpreter, before being
implemented in the code generator.

The other category of future work is performance, as many improvements can be made to
the code generator. For example, if-expressions could be compiled using destination-driven
code generation, which reduces code size [21]. The code for calling external functions
involves multiple layers of indirection and could be simplified. The implementation of
pattern matching could possibly be improved. AST optimizations, such as constant folding,
constant propagation, copy propagation, and dead code elimination, could be applied before
code generation. Peephole optimizations could also be applied after code generation. Tail
call optimization would convert tail recursion to iteration, reducing the stack memory used
in recursive functions. Smaller and more efficient data structures would also reduce memory
consumption. Furthermore, profiling the code generator and generated bytecode could
reveal further opportunities for writing or generating more efficient code.

Finally, although outside the scope of this thesis, improving the implementation of the
logic language could lead to significant speedup, since in many Flix programs, most of the
execution time is spent in the solver. Currently, the solver evaluates rules by interpreting
the AST. Replacing the solver with a back-end that generated bytecode to evaluate the
rules should significantly improve performance.
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Chapter 7

Conclusions

This thesis presented the implementation of the functional language of Flix, as well as its
evaluation. The functional language implementation has two back-ends: an AST interpreter
and a JVM bytecode generator. Additionally, the AST produced by the front-end must
undergo a number of transformations before it can be consumed by the back-ends. These
transformations were also covered in the thesis.

Although the interpreter could directly use the untransformed AST, this is much more
difficult, if not impossible, for the code generator. Thus, transformations convert an AST
that closely resembles the source program to an AST with lower-level primitives. These
transformations include pattern-matching compilation, closure conversion and lambda
lifting, and variable numbering.

The AST interpreter was straightforward to implement, though one small challenge was
supporting the three different types of function calls: ordinary function calls, closure calls,
and external function calls. However, the interpreter is still relatively easy to understand and
maintain, which makes it useful for debugging and prototyping new features. In contrast, the
code generator is much more complicated, but provides better performance. Implementation
challenges included determining how to organize, load, and execute bytecode; reconciling
the Flix integer semantics with the JVM integer semantics; and implementing closures with
invokedynamic and the Java standard library.

This thesis also evaluated the two functional language back-ends in terms of correctness
and performance. Over 500 correctness tests were implemented in the ScalaTest frame-
work. Additionally, the Strong Update analysis, a points-to analysis for C programs, was
implemented in Flix and compared to a Datalog implementation that ran on the DLV
solver. For performance, six benchmarks were written: fib, nbody, pidigits, matrixmult,
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shortestpaths, and strongupdate. The first three benchmarks are purely functional pro-
grams, and were also used to compare Flix with Ruby, Scala, Java, and C++. matrixmult

and shortestpaths require both functional and logic code, and so only compared the
interpreter to the generated bytecode. Finally, strongupdate was used as a real-world
benchmark, and compared the Flix implementations to Datalog and a handwritten C++

implementation.

The results show that compiled Flix is faster than interpreted Flix. In some cases,
such as fib and nbody, compiled Flix is significantly faster. However, for matrixmult and
shortestpaths, most of the execution time is spent in the solver, evaluating logic code,
so the performance of the two functional back-ends is similar. Finally, for strongupdate,
both the interpreted and compiled Flix implementations are faster than the Datalog
implementation, though substantially slower than the handwritten C++ analyzer.

Implementing a bytecode generator for the functional language back-end is the first
significant step towards better performance. However, there is still room for improvement,
by applying optimization phases or generating more efficient code. Another significant
performance improvement would be to implement a code generator for the logic language.
As the performance of Flix improves and approaches the performance of handwritten
analyzers, Flix will become a more attractive language for implementing static analyses.
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