
Implementing a
Functional Language for Flix

Ming-Ho Yee

Supervisor: Ondřej Lhoták

September 1, 2016

Master’s Thesis Presentation

• Today I’m going to be talking about what I worked on for my thesis.

• Flix is a project I’ve been working on with Ondřej and Magnus.

• We’ve also had two undergraduates who have worked on Flix (Billy and

Luqman).

• My focus has been the functional language back-end.

1

Static Analysis

• Analyze software without executing it

• Model abstract program state with lattice elements

Constant propagation lattice

Ming-Ho Yee Implementing a Functional Language for Flix 2

• Static analysis: technique for analyzing software without executing it.

• Applications: compiler optimizations, code refactoring, bug finding.

• A static analysis typically models abstract program state as elements of a lattice.

• Ordering represents precision, lower = more precise.

• Example: constant propagation lattice.

2

Datalog

• Datalog is a declarative programming language

• “What not how”

• Has been used for pointer analyses

• But Datalog has limitations:

• No lattices

• No functions

• Poor interoperability

Ming-Ho Yee Implementing a Functional Language for Flix 3

• One approach to implementing static analyses is to use Datalog.

• Datalog is a declarative language: what not how.

• Specify the constraints of the analysis, and a Datalog solver finds the

solution.

• Much easier to understand and maintain than using Java or C++

• Many researchers have used Datalog to implement pointer analyses

• But Datalog has some limitations:

• No user-defined lattices

• No functions

• Poor interoperability

• Some analyses cannot be expressed in Datalog.

• Using Datalog with existing tools and front-ends is difficult.

3

A Language for Static Analysis

• Flix extends Datalog with lattices and functions

• Logic language

• Functional language

• Flix is implemented on the JVM

Ming-Ho Yee Implementing a Functional Language for Flix 4

• Flix extends Datalog with user-defined lattices and functions.

• Specify analysis constraints in the logic language.

• Based on Datalog and supports user-defined lattices.

• Express user-defined functions in the functional language.

• Pure and strict, supports let-bindings, first-class functions, pattern

matching.

• Supports the Java integer types, including BigInteger. Also supports

tags and tuples.

• Flix is implemented on the JVM.

• Interoperability with JVM languages.

• Call Flix from a JVM language, call JVM code from Flix.

4

Constant Propagation in Flix (1/2)

enum Constant {

case Top, case Cst(Int), case Bot

}

def leq(e1: Constant, e2: Constant): Bool =

match (e1, e2) with {

case (Bot, _) => true

case (Cst(n1), Cst(n2)) => n1 == n2

case (_, Top) => true

case _ => false

}

def lub(e1: Constant, e2: Constant): Constant = …

def glb(e1: Constant, e2: Constant): Constant = …

def sum(e1: Constant, e2: Constant): Constant = …

Ming-Ho Yee Implementing a Functional Language for Flix 5

• Here is what constant propagation looks like in Flix.

• Some details are omitted for brevity.

• First, look at the functional code.

• We define a tagged union, Constant.

• Represents elements of the constant propagation lattice.

• We define the three lattice operations:

• leq, lub, glb

• leq is an example of pattern matching.

• sum is a separate function, more on that later.

5

Constant Propagation in Flix (2/2)

// analysis inputs

rel AsnStm(r: Str, c: Int)

rel AddStm(r: Str, x: Str, y: Str)

// analysis outputs

lat LocalVar(k: Str, v: Constant)

// rules

LocalVar(r, Cst(c)) :- AsnStm(r, c).

LocalVar(r, sum(v1, v2)) :- AddStm(r, x, y),

LocalVar(x, v1),

LocalVar(y, v2).

Ming-Ho Yee Implementing a Functional Language for Flix 6

• Now for the logic code.

• We define two relations, AsnStm and AddStm, as inputs.

• Variable r is assigned the integer c

• Variable r is the result of x + y

• We define the LocalVar lattice, which is the output the analysis computes.

• Variable k has value v.

• LocalVar is a map lattice, where k is the key and v is the value.

• First rule: if we assign c to r, then we know the variable r has value c.

• Second rule: if we’re adding two variables and know their values, we can compute

the value of the result, using the sum function.

6

Constant Propagation Example

LocalVar(r, Cst(c)) :- AsnStm(r, c).

// input facts

AsnStm("x", 0).

AsnStm("x", 1).

// output facts

LocalVar("x", Cst(0)).

LocalVar("x", Cst(1)).

LocalVar("x", lub(Cst(0), Cst(1))).

Ming-Ho Yee Implementing a Functional Language for Flix 7

LocalVar("x", Top).

• Here’s a small example of how Flix handles lattices.

• We’ll look at the first rule, and two input facts.

• Evaluating the rule, we infer that the local variable ”x” has value 0 and 1.

• But LocalVar is a lattice. We have two values for the same key.

• We have to compress the values, using the lub operation.

• This gives us Top.

• In the static analysis, we don’t know the exact value for “x”.

• So we approximate by saying the value is Top.

7

Back-end Architecture

Ming-Ho Yee Implementing a Functional Language for Flix 8

Solver

Bytecode OR Interpreter

Abstract
Syntax
Tree

Codegen

Transformations

• After several phases, the front-end produces a TypedAst.

• The TypedAst goes through several transformations, becoming a SimplifiedAst and

then an ExecutableAst.

• Compiles higher-level constructs like pattern matching into lower-level

primitives.

• We’ll discuss pattern matching and lambda functions.

• Execution starts in the solver, which evaluates rules of the logic language.

• During this process, the solver may need to evaluate functional code.

• i.e. lattice operation (lub), or an explicit function call (sum)

• After evaluating the function, the result is returned to the solver.

• Two implementations of the functional language:

• Interpreter was original, and is for debugging and prototyping.

• JVM bytecode generator is newer, and for performance.

• This presentation will cove the code generator.

8

AST Transformations

• Pattern-matching compilation

• Closure conversion and lambda lifting

• Variable numbering

• Optimizations (future work)

Ming-Ho Yee Implementing a Functional Language for Flix 9

• 10:00 to get here.

• Before code generation, a number of AST transformations are required.

• The interpreter doesn’t really need any of this.

• But to keep things consistent, the interpreter and code generator consume

the same AST

• First is to compile pattern matching from a high-level representation into lower-

level primitives.

• Then we need to do a few transformations to implement lambda functions.

• Variable numbering is self-explanatory.

• Numbers are needed so the code generator can emit load/store

instructions.

• Finally, AST transformations go here.

• Currently none, but they could be constant propagation, copy propagation,

dead code elimination.

• Today I’ll discuss pattern-matching compilation and closure conversion.

9

Compiling Pattern Matching

// before

match x with {

case PAT1 => EXP1

case PAT2 => EXP2

case _ => ERROR // implicit default case

}

// after

let v_0 = x in

let err = λ() ERROR in

let e_2 = λ() if (PAT2 succeeds) EXP2 else err() in

let e_1 = λ() if (PAT1 succeeds) EXP1 else e_2() in

e_1()

Ming-Ho Yee Implementing a Functional Language for Flix 10

• First transformation to discuss is pattern-matching compilation.

• This is all pseudocode.

• In the pattern match, the expression x is compared against the patterns.

• If it matches, then the corresponding expression is evaluated.

• If nothing matches, the expression throws an error.

• It’s straightforward to implement this in an interpreter, but not so for a code

generator.

• We want to transform to something simple. Let-expressions, if-expressions,

functions, and other primitives.

• Two main steps: create the hierarchy of let-expressions, then transform the

patterns.

• Need to generate fresh names for the variable being matched (so we don’t

evaluate it multiple times), each case, and the error case.

• Construct the let-expressions inside-out, so a case can refer to the next

one.

• Finally, construct a call to the function representing the first case.

10

Wildcard Pattern

// before

match x with {

case _ => true

}

// after

let v_0 = x in

let err = λ() ERROR in

let e_1 = λ() true in

e_1()

Ming-Ho Yee Implementing a Functional Language for Flix 11

• There are five types of patterns, and each needs to be handled specifically.

• A wildcard pattern matches everything and also succeeds.

• So the transformation is simply the body of the case.

11

Variable Pattern

// before

match x with {

case n => n + 1

}

// after

let v_0 = x in

let err = λ() ERROR in

let e_1 = λ() (let n = v_0 in n + 1) in

e_1()

Ming-Ho Yee Implementing a Functional Language for Flix 12

• A variable pattern always succeeds, but it binds the matched value to a name.

• This is typically used in subpatterns to extract value from tags and tuples.

• The transformation is a let-expression in the body of the case.

12

Literal Pattern

// before

match x with {

case 42 => true

}

// after

let v_0 = x in

let err = λ() ERROR in

let e_1 = λ() if (v_0 == 42)

true

else

err() in

e_1()

Ming-Ho Yee Implementing a Functional Language for Flix 13

• A literal pattern succeeds if the value equals the literal in the pattern.

• This pattern checks if x == 42.

• This translates to an if-expression and an equality check.

• The true branch is the body of the case.

• The false branch is a call to the next case.

13

Tag Pattern
enum E { case A(Int), case B(Str) }

// before

match x with {

case E.A(42) => true

}

// after

let v_0 = x in

let err = λ() ERROR in

let e_1 = λ() if (CheckTag(A, v_0))

let n_0 = GetTagValue(v_0) in

if (n_0 == 42) true else err()

else

err() in

e_1()

Ming-Ho Yee Implementing a Functional Language for Flix 14

• A tag pattern succeeds if the enum and tag names match, and the subpattern also

matches.

• This pattern checks that x is the tag E.A, and its inner value == 42.

• In this example, E is a tagged union with tags A and B.

• E is the enum name, A and B are the tag names.

• The pattern match uses the CheckTag primitive.

• Note that the type checker guarantees that v_0 is a member of the E

tagged union.

• If the check succeeds, then we bind the inner tag value to a fresh name,

using a let-expression and the primitive GetTagValue.

• Then we have the transformed subpattern.

• If the subpattern or the CheckTag fail, then we evaluate the error case.

14

Tuple Pattern

// before
match x with {
case (4, 2) => true

}

// after
let v_0 = x in
let err = λ() ERROR in
let e_1 = λ() let n_0 = GetTupleIndex(v_0, 0) in

let n_1 = GetTupleIndex(v_0, 1) in
if (n_0 == 4)

if (n_1 == 2) true else err()
else

err() in
e_1()

Ming-Ho Yee Implementing a Functional Language for Flix 15

• A tuple pattern contains multiple subpatterns, each corresponding to a tuple

element.

• The type checker guarantees the type and arity of x matches the patterns.

• The transformed pattern extracts the tuple elements, using GetTupleIndex, and

binds them to fresh names.

• Then each subpattern is translated.

• If everything succeeds, the body of the case is evaluated.

• If anything fails, the next case is evaluated.

15

Lambda Functions

• Functions are first-class

• Can be nested, stored in variables, passed as arguments,
returned from functions…

• No nested methods in bytecode

• Target of a call must be a method reference

Ming-Ho Yee Implementing a Functional Language for Flix 16

• In Flix, functions are first-class.

• You can nest function definitions, store a function in a variable, pass it as an

argument, and return from a function.

• This does not hold for bytecode.

• All methods must be defined at the top-level. No nesting.

• The target of a method call must be a method reference.

• Cannot be an arbitrary expression that evaluates to a function.

16

Lambda Lifting (1/3)

// before

def f() = let g = λ(x, y) x+y in

g(1, 2)

// after lifting

def f() = g(1,2)

def g(x, y) = x+y

Ming-Ho Yee Implementing a Functional Language for Flix 17

• We solve the first problem (nested functions) with lambda lifting.

• Self-explanatory name: we lift a nested lambda definition to the top level.

• In this example, within the definition of f, we bind a function to g, and then call g.

• The transformation simply lifts the inner definition.

• g now refers to a function and not a local variable.

17

Lambda Lifting (2/3)

// before

def f(a) = let g = λ(x, y) a+x+y in

g(1, 2)

// after lifting

def f(a) = g(1,2)

def g(x, y) = a+x+y // what is a?

Ming-Ho Yee Implementing a Functional Language for Flix 18

• But what about free variables?

• If we naïvely lift, then we have a definition with an unbound variable.

• So lambda lifting must account for free variables.

18

Lambda Lifting (3/3)

// before

def f(a) = let g = λ(x, y) a+x+y in

g(1, 2)

// after rewriting

def f(a) = let g = λ(a′, x, y) a′+x+y in

g(a, 1, 2)

// after lifting

def f(a) = g(a, 1, 2)

def g(a′, x, y) = a′+x+y

Ming-Ho Yee Implementing a Functional Language for Flix 19

• We rewrite the function to pass the free variable as an extra parameter.

• Our convention is to prepend the free variables to the parameter list.

• Note that the call site must also be rewritten.

• Now we can safely lift the lambda.

19

Lambda Lifting…?

def f(a) = let g = λ(x, y) a+x+y in

h(g, 1, 2)

def h(g′, x, y) = g′(x, y) // how to rewrite g′?

Ming-Ho Yee Implementing a Functional Language for Flix 20

• Rewriting all the call sites is pretty annoying.

• But it gets worse: what if you can’t rewrite the call site?

• What if we pass a function as an argument?

• In this example, g needs to be rewritten to take an extra parameter.

• But how do we know that we need to rewrite g’?

• What if some other function passes in a different g that doesn’t need to be

rewritten?

• Real problem: variables are bound at different times.

• a is bound when the lambda is created.

• x and y are bound when the lambda is called.

• Solution: use closures.

• Store the data (variables that are bound when closure is created)

• Store the code (reference to function)

20

Closure Conversion

// after closure conversion

def f(a) = let g = MkClosure(λ(a′, x, y) a′+x+y, a) in

h(g, 1, 2)

def h(g′, x, y) = ApplyClosure(g′, x, y)

// after lifting

def f′(a′, x, y) = a′+x+y

def f(a) = let g = MkClosure(f′, a) in

h(g, 1, 2)

def h(g′, x, y) = ApplyClosure(g′, x, y)

Ming-Ho Yee Implementing a Functional Language for Flix 21

• We convert all lambda functions into closures.

• The closure contains an inner lambda function.

• The original function is rewritten to pass the captured variables.

• The closure contains the values that are captured.

• At closure creation, we save the values that need to be passed into the function.

• At closure call (ApplyClosure), the saved values ae combined with the closure

arguments and passed to the implementing function.

• Now we can safely lift the inner lambda, giving it a name.

• We’ll get back to MkClosure and ApplyClosure later.

21

Code Generation

• Interpreter is easy to understand
and maintain

• Code generator is better for
performance

• Targets the JVM

• JVM is a stack machine

• All operands and intermediate values
placed on stack

Ming-Ho Yee Implementing a Functional Language for Flix 22

ICONST_1

ICONST_2

IADD

...

1

2

3

• 13:00 (23:00 total) to get here

• Two back-ends for the functional language:

• Interpreter – original one, easy to understand and maintain, good for

debugging and prototyping features.

• Code generator – now the default back-end, more complicated, but better

for performance.

• Since Flix is implemented on the JVM, the code generator targets the JVM.

• Also good for portability.

• JVM is a stack machine, unlike x86, ARM, MIPS

• Makes some things nicer: no register allocation since all operands and

intermediate values go onto the stack.

• Makes some things harder: need to compute maximum stack height,

manage constant pool, compute metadata for bytecode verifier.

• Use the ASM library to handle these tasks.

• Scala 2.12 uses ASM.

• There’s a few interesting codegen problems to discuss today.

22

Loading and Executing Bytecode

• How to call generated bytecode?

• Use reflection and Java’s ClassLoader
• Represent bytecode method as a Method object

• Call with m.invoke()

Ming-Ho Yee Implementing a Functional Language for Flix 23

• ASM library produces bytecode as an array of bytes.

• For convenience, we want to load it immediately, instead of writing to disk.

• Then we need to be able to execute it.

• We use reflection and Java’s ClassLoader.

• Each bytecode method is represented by a reflection Method object.

• Call a method with m.invoke().

• We store Method objects on the AST.

• Each function has an expression AST and a Method object.

23

Representing Flix Values

JVM TypeFlix Type

ReferencePrimitive

java.lang.BytebyteInt8

java.lang.ShortshortInt16

java.lang.IntegerintInt32

java.lang.StringStr

Value.TagTag

Value.TupleTuple

Ming-Ho Yee Implementing a Functional Language for Flix 24

• Flix values are represented as primitives whenever possible.

• E.g. Int32 -> int

• Sometimes values need to be boxed, e.g. java.lang.Integer.

• Some Flix values are represented as Java reference types.

• E.g. Str -> java.lang.String

• Other Flix values have no corresponding class in the Java standard library, so Flix

defines them.

• Tag -> Value.Tag

• Tuple -> Value.Tuple

• Tags and tuples are generic in the values they contain, so Flix has to use

reference types and type erasure.

• Box Int32 as a java.lang.Integer and then store as java.lang.Object.

• When extracting the value, need to cast or unbox.

• Code generator emits the code to do this automatically.

24

Integer Semantics

• JVM and Flix support integers with 8, 16, 32, 64 bits

• Two’s complement representation

• JVM sign-extends 8-bit and 16-bit integers

• Flix does not sign-extend integers

• Different overflow semantics

Ming-Ho Yee Implementing a Functional Language for Flix 25

• Both the JVM and Flix support signed integers, with 8, 16, 32, and 64 bits.

• Use two’s complement representation.

• Implementation detail of the JVM: sign-extend 8-bit and 16-bit integers to 32 bits.

• The JVM is designed for 32-bit integers and operations.

• A “surprise” from compilers class: adding two 8-bit integers returns a 32-bit

integer.

• Flix does not sign-extend integers.

• This may be harder to implement, but conceptually, it’s easier to

understand.

• Leads to some differences, specifically with overflow.

• The problem is to implement Flix semantics on the JVM, which has different

semantics.

25

Integer Overflow (1/2)

Ming-Ho Yee Implementing a Functional Language for Flix 26

010000002 = 6410
+ 010000002 = 6410

010000002 = 6410
+ 010000002 = 6410

100000002

010000002 = 6410
+ 010000002 = 6410

100000002 = -12810

• Consider adding two 8-bit integers with value 64.

• Mathematically, the result is 128.

• But this cannot be represented in two’s complement with 8-bits.

• The result we get is the 8-bit representation for -128.

26

Integer Overflow (2/2)

Ming-Ho Yee Implementing a Functional Language for Flix 27

00000000 00000000 00000000 010000002 = 6410
+ 00000000 00000000 0000000+ 010000002 = 6410
--

00000000 00000000 00000000 010000002 = 6410
+ 00000000 00000000 00000000 010000002 = 6410
--

00000000 00000000 00000000 010000002 = 6410
+ 00000000 00000000 00000000 010000002 = 6410
--

00000000 00000000 00000000 100000002

00000000 00000000 00000000 100000002

00000000 00000000 00000000 010000002 = 6410
+ 00000000 00000000 00000000 010000002 = 6410
--

00000000 00000000 00000000 100000002 = 12810

11111111 11111111 11111111 10000000211111111 11111111 11111111 100000002 = -12810

• On the JVM, the operands are sign-extended.

• We get the 32-bit representation for the same value, 64.

• But the binary result now represents a different number, 128.

• This is the correct mathematical result, but not the result according to Flix

semantics.

• Fortunately, the JVM has a “truncate to 8 bits and sign-extend” instruction, I2B.

• This gives us the 32-bit representation of -128, the desired result.

• This is something we have to do for integer expressions, including all arithmetic

and some bitwise expressions.

27

Implementing Closures…?

// Scala
val a = 10
val f = (x: Int, y: Int) => a + x + y
f(1, 2) // 13

// Compiled Scala
class anon$fun(a$0: Int) extends Function2 {
def apply(x: Int, y: Int) = a$0 + x + y

}
val a = 10
val f = new anon$fun(a)
f.apply(1, 2) // 13

Ming-Ho Yee Implementing a Functional Language for Flix 28

• In object-oriented languages, one way to implement closures is to use function

objects.

• C++, C#, and Scala 2.11 use this method.

• Every lambda function has an associated anonymous class.

• The class stores captured variables, and defines a method that implements

the lambda function.

• Creating a closure instantiates that class, with values of captured variables.

• Here, a is passed to the constructor.

• Calling a closure is an interface call on the method.

• Problem with this approach: must generate an anonymous class for each lambda

function. Increases code size.

28

Using invokedynamic

• Flix uses the same strategy as Java 8 and Scala 2.12

• Create closure object with invokedynamic

• invokedynamic represents a dynamic call site

• Initially, target method is unknown

• invokedynamic calls bootstrap method to link target

• Subsequent calls skip bootstrap and directly call target

Ming-Ho Yee Implementing a Functional Language for Flix 29

• An alternate approach, used by Java 8 and Scala 2.12, is invokedynamic.

• Instead of the code generator statically creating the classes, invokedynamic

will dynamically create the classes.

• Initially, the invokedynamic instruction is a dynamic call site, and the target of the

call is unknown

• To determine the target, invokedynamic calls a bootstrap method, and then

links it

• Subsequent calls bypass the bootstrap and directly call the target

• In other words, let the run time determine which method is called, but

then permanently link it so future calls are “static”

29

Implementing Closures

• Closure creation (MkClosure)

• invokedynamic call to Java’s LambdaMetafactory

• Static arguments: functional interface, method handle

• Dynamic arguments: captured values

• Closure call (ApplyClosure)

• Emit an interface call

Ming-Ho Yee Implementing a Functional Language for Flix 30

• To create a closure, code generator emits an invokedynamic call to

LambdaMetafactory, which is defined in the Java standard library.

• Static arguments represent the functional interface implemented by the

closure, and a handle to the method implementing the function.

• Dynamic arguments represent the captured values.

• When a closure is created for the first time, invokedynamic calls the metafactory,

which generates an anonymous class.

• The class is instantiated with the captured values.

• Subsequent calls bypass the metafactory and directly instantiate the class.

• Closure call

• Emit an interface call.

• The closure will automatically supply the captured values to the

implementing function.

30

Generating Functional Interfaces

• A closure object implements a functional interface

• Interface is provided by the implementation

• Flix generates its own functional interfaces

• Before code generation, traverse AST to collect type
signatures of closures

• Generate the interfaces

Ming-Ho Yee Implementing a Functional Language for Flix 31

• Each closure object needs to implement a functional interface.

• Functional interface: interface with a single abstract method.

• The interfaces must be provided by the implementation.

• Java provides a very small selection.

• If you’re writing lambdas in Java and can’t find the interface you

need, you have to define your own.

• Scala is the opposite extreme.

• Very general interfaces, all generic

• Flix generates its own functional interfaces.

• Traverse the AST, find every lambda function, and generate an interface for

each unique type.

• Generates only the interfaces that are needed.

• Interfaces are specialized, so no generics and no boxing/unboxing.

31

Evaluation – Correctness

• Implemented in ScalaTest

• Over 500 tests, each a small Flix program

• Strong Update analysis

• Points-to analysis for C programs

• Compare Flix versions with pure Datalog version

• Use SPEC CPU200 and CPU2006 integer benchmarks as
analysis inputs

Ming-Ho Yee Implementing a Functional Language for Flix 32

• 15:00 (38:00 total) to get here

• It’s important to ensure the code generator produces the right code.

• Almost all of the tests are written in the ScalaTest framework.

• Over 500 tests, each a small and complete Flix program.

• For a larger test, we use the Strong Update analysis, which is a real-world static

analysis.

• Exercises logic code as well as functional code.

• A points-to analysis for C programs.

• Achieves better precision by propagating singleton sets flow-

sensitively.

• Does not sacrifice performance by propagating non-singleton sets

flow-insensitively.

• Compare the two Flix implementations to a Datalog reference

implementation.

• Datalog implementation must simulate lattices.

• Run on the DLV solver.

• Use SPEC integer benchmarks as analysis inputs.

32

Evaluation - Performance

• Benchmarks:

• fib

• nbody

• pidigits

• matrixmult

• shortestpaths

• strongupdate

• Languages:

• Flix

• Ruby

• Scala

• Java

• C++

Ming-Ho Yee Implementing a Functional Language for Flix 33

• Benchmarks:

• Purely functional, so compared against implementations in other

languages.

• fib – naïve implementation of Fibonacci, taking exponential time.

• nbody – Computer Languages Benchmarks Game; N-body

simulation that models Sun and gas giants

• pidigits – CLBG; computes the digits of pi one at a time; requires

arbitrary-precision arithmetic

• Require the solver, so only compiler vs interpreter

• matrixmult – multiply two random matrices together, using cubic-

time algorithm

• shortestpaths – based on the Floyd-Warshall algorithm for all-pairs

shortest paths

• Real static analysis

• strongupdate – the Strong Update analysis; also compared with

Datalog and handwritten C++ analyzer

• Languages

• Flix – both compiled and interpreted. Purely functional language, so data

structures need to be copied and not mutated in place. No tail call

33

optimization.

• Ruby – dynamic language with a bytecode interpreter.

• Scala – JVM language; benchmarks written in functional style.

• Java – benchmarks written on OO-style.

• C++ – benchmarks written in OO-stye.

33

Evaluation – fib

Ming-Ho Yee Implementing a Functional Language for Flix 34

• Compiled Flix is 250x faster than interpreted Flix

• Fibonacci is a simple function, so the compiled bytecode for Flix, Scala, and Java is

very similar.

• Scala is slower than Flix

• Scala convention put the methods in a singleton object, which get compiled

to instance methods.

• Ruby is faster than Flix interpreter

• Bytecode interpreter vs AST interpreter

34

Evaluation – nbody

Ming-Ho Yee Implementing a Functional Language for Flix 35

• Both Flix implementations are the slowest.

• But compiled Flix is 17x faster than interpreted Flix.

• nbody is the most complicated functional program implemented in Flix, and

highlights many inefficiencies.

• No tail call optimization, so the stack memory usage increases until the

stack overflows.

• Interpreter needs to copy the environment for each call, which becomes

expensive.

• C++ is the fastest

• Compiler can emit vector instructions.

35

Evaluation – pidigits

Ming-Ho Yee Implementing a Functional Language for Flix 36

• Interestingly, Ruby, Flix, Scala, and Java are all very similar.

• Though Ruby is a bit slower, and C++ is the fastest.

• The bottleneck is in the arbitrary-precision arithmetic.

• Java, Scala, and Flix all use the same library (java.math.BigInteger).

• Doesn’t matter if other parts of the program are slower.

• Ruby and C++ use the same C library: GNU Multiple Precision Arithmetic Library.

• But Ruby is much slower, probably because of overhead as a dynamic

language.

• Calling + involves a lot of overhead before the call makes it to the C library.

36

matrixmult and shortestpaths

Ming-Ho Yee Implementing a Functional Language for Flix 37

• matrixmult and shortestpaths is very expensive.

• Most of the time is spent in the solver, evaluating the logic code.

• Functional code has very little effect.

• So very little difference between interpreter and code generator.

37

Evaluation – strongupdate

Ming-Ho Yee Implementing a Functional Language for Flix 38

• Differences are consistent.

• Datalog slower than interpreted Flix, slower than compiled Flix, slower than

C++.

• The analysis requires a constant propagation lattice.

• In Datalog, the lattice is simulated as a power set lattice, which is much

more expensive.

• In Flix, the lattice can be expressed directly.

• So interpreted Flix is 3.7x faster than Datalog.

• Compiled Flix is 1.7x faster than the interpreter.

• C++ is even faster, at 126x.

• Flix is a general framework implemented in Scala, so already at a

disadvantage compared to C++.

• The C++ implementation also has a specific optimization to reduce memory

usage.

• Some elements of the lattice occur much more frequently.

• The C++ analyzer uses a special data structure that can implicitly

represent these elements.

• But Flix must explicitly represent them.

38

Future Work

• Language is still evolving

• New features to implement

• Performance

• Improve pattern matching

• AST optimizations

• Peephole optimizations

• Tail call optimization

Ming-Ho Yee Implementing a Functional Language for Flix 39

• Two main areas for future work.

• New language features:

• The language is still evolving.

• Some features may be isolated to the logic code, or can be implemented in

just the front-end.

• Otherwise, features need to be implemented twice, in the interpreter and

the code generator.

• Interpreter should make it easier to prototype and test.

• Performance is the big category.

• Hook calls could be more direct, rather than going through the Flix object

and invoke method.

• Pattern matching could be optimized.

• AST optimizations: constant propagation, copy propagation, dead code

elimination.

• Peephole optimizations on the generated bytecode.

• Tail call optimization, since we need recursion.

• And slightly unrelated: code generation for logic language.

• This will probably have the most benefit, since the solver is a major

bottleneck for performance.

39

Conclusions

• Implementing the functional language of Flix

• AST transformations, interpreter, code generator

• Evaluation

• Compiled Flix is faster than interpreted Flix

• Sometimes comparable to Java and Scala

• Bytecode generator is first step for performance

• Much work remains to be done

Ming-Ho Yee Implementing a Functional Language for Flix 40

• 5:00 (43:00 total) to get here.

• To summarize:

• This thesis concerned the implementation of the Flix functional language.

• First the interpreter, then the code generator, and also common AST

transformations.

• Evaluation finds that the compiled code is faster than the interpreted code.

• Especially for benchmarks that spend most of the time in functional code

• In some cases, Flix is comparable to Java and Scala.

• However, Flix is still slower than a handwritten C++ static analyzer.

• The bytecode generator is only the first step for performance.

• There is much work remaining.

40

