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Abstract

We present FLIX, a declarative programming language for

specifying and solving least fixed point problems, particularly

static program analyses. FLIX is inspired by Datalog and

extends it with lattices and monotone functions. Using FLIX,

implementors of static analyses can express a broader range

of analyses than is currently possible in pure Datalog, while

retaining its familiar rule-based syntax.

We define a model-theoretic semantics of FLIX as a natural

extension of the Datalog semantics. This semantics captures

the declarative meaning of FLIX programs without imposing

any specific evaluation strategy. An efficient strategy is

semi-naïve evaluation which we adapt for FLIX. We have

implemented a compiler and runtime for FLIX, and used it

to express several well-known static analyses, including the

IFDS and IDE algorithms. The declarative nature of FLIX

clearly exposes the similarity between these two algorithms.

Categories and Subject Descriptors F3.2 [Semantics of

Programming Languages]: Program Analysis

General Terms Logic Programming, Static Analysis

Keywords logic programming, static analysis, Datalog

1. Introduction

Least fixed point problems are ubiquitous in mathematics and

computer science, significantly in programming languages,

and particularly in program analysis. Given a monotone

function F on a lattice, the goal is to find the least x for

which F pxq “ x. At the lowest and most general level, a

program is a function F that instructs a machine how to

change its overall state at each computation step. A static

analysis computes an abstract state x̂ that over-approximates

all possible concrete states that a program can reach. Every

sound approximation must satisfy F̂ px̂q Ď x̂, where F̂ is an

abstraction of the concrete transformation function F , since

if a state in x̂ can be reached by a computation, then so can

a state in F̂ px̂q. The least x̂ satisfying this property can be

computed by starting from the least element K and iteratively

applying F̂ until the fixed point is reached [15, 35].

Static analyzers, which involve fixed-point computations,

are complex pieces of software often implemented in general-

purpose languages such as C++ or Java. The many mutual de-

pendencies, imposed by the fixed-point problem, are typically

expressed using a complex arrangement of worklists. The de-

cision of how to structure the worklists is global, so these

large analyzers become difficult to restructure and modify. It

also becomes difficult to understand precisely the analysis

problem that the implementation is actually solving, and to

assure oneself that the implementation is correct. Moreover,

the complexity of the dependencies between inter-related sub-

analyses often leads analysis implementors to sacrifice preci-

sion. For example, some interprocedural analysis frameworks

use a call graph precomputed with conservative assumptions

to compute dataflow information that would enable a more

precise call graph.

To overcome these difficulties, some analysis designers

have turned to Datalog [7, 9, 63]. A Datalog program is a set

of rules and its solution is the minimal model that satisfies

those rules. An important benefit of a Datalog program is

its modularity: because the rules are declarative, individual

sub-analyses can be easily composed by taking the union of

their rules, and the Datalog solver takes care of the mutual

dependencies automatically. Thus, it is easy to understand

an analysis by understanding its components individually.

Correctness of each component implies correctness of the

overall analysis. Furthermore, Datalog solvers implement

many important optimizations, such as index selection, query

planning, and parallel execution [3, 27, 28, 58]. In a hand-

crafted static analyzer, each of these optimizations must be

implemented manually.
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However, Datalog has important limitations that restrict

its applicability to program analysis:

Lattices. Datalog is inherently limited to rules on relations,

i.e. powersets of tuples, but common static analyses operate

over a wide variety of other lattices. Some simple lattices can

be embedded in powersets, but at a very high computational

cost, and more interesting lattices cannot be encoded at all.

For example, we can embed the constant propagation lattice

over a finite domain in the following way: K is represented

by the empty set, each constant is represented by a singleton

set, and J is represented by any set that contains a specially

designated J element. We then add a rule that adds the J
element to every set of two or more elements. However, this

J rule cannot prevent the Datalog program from processing

the original non-singleton, non-J sets. We get the worst of

both worlds: the precision is the same as with the constant

propagation lattice, but the computational cost is the same

as with the much more expensive arbitrary-sets-of-constants

lattice. Moreover, when the domain of the constants is infinite,

such as the integers, the lattice cannot be encoded at all.

Functions. A related issue is that functions can only be

expressed as tabulated relations in Datalog. This can be

cumbersome and slow, and functions with an infinite domain

or codomain cannot be expressed at all. Consequently, most

operations on lattices cannot be expressed. Returning to

the constant propagation lattice, even if the lattice itself

could somehow be expressed in Datalog, there would be

no way to express abstract addition or multiplication on

its elements. Moreover, the lack of functions, as well as

compound datatypes, means that even a simple context-

sensitive analysis such as k -CFA cannot be expressed.

Interoperability. A practical limitation of most Datalog

solvers is that they do not interact well with existing infras-

tructure. For instance, static analyzers are often forced to

serialize their facts to a file, externally execute the solver,

and then read the solution back from a file. Besides addi-

tional overhead, this requires a tedious mapping between the

analysis and the Datalog solver format.

To overcome these limitations, we propose FLIX, a new

declarative language for fixed-point problems. FLIX is a rule-

based language inspired by Datalog and extended with lattices

and monotone functions.

In summary, this paper makes the following contributions:

• We present FLIX, a new programming language inspired

by Datalog and extended with lattices and functions.

• We define a model-theoretic semantics of FLIX as a

natural generalization of the Datalog semantics.

• We show how several well-known static analyses, which

are inexpressible in Datalog, can be expressed in FLIX.

• We present declarative formulations of the IFDS and

IDE algorithms in FLIX, which clearly and concisely

demonstrate that IDE is a generalization of IFDS.

• We discuss our implementation of a preliminary FLIX

solver and its relation to semi-naïve evaluation. We exper-

imentally compare its performance to hand-crafted static

analyzers and the DLV Datalog solver.

2. Motivation

2.1 Points-to Analysis with Datalog

Undoubtedly, the “killer-app” for Datalog has been points-to

analysis of object-oriented programs [4, 7, 30, 37, 54, 55, 63].

This involves the specification and computation of sophisti-

cated whole-program subset-based points-to analysis [1, 31].

Consider the following Java fragment:

1 ClassA o1 = new ClassA() // object A
2 ClassB o2 = new ClassB() // object B
3 ClassB o3 = o2;
4 o2.f = o1;
5 Object r = o3.f; // Q: What is r?

A points-to analysis for this program can help answer ques-

tions such as: “to what object can the local variable r point?”

In this case, r can point to object A since: (i) variable o1

points to object A, (ii) variable o2 points to object B, (iii)

variable o3 points to the value of variable o2 which is object

B, (iv) object A is written to field f of object B due to i and

ii, (v) the value of r is object A since variable o3 points to

object B due to iii, and the value of field f is A due to iv.

Unfortunately, such complicated reasoning is necessary

due to the multiple recursive dependencies in the dataflow

of an object-oriented program: specifically, that local vari-

able information depends on heap information which itself

depends on local variable information. Datalog provides an

elegant formalism to express such recursive rules. Figure 1

shows a points-to analysis for a minimal object-oriented lan-

guage. This formulation has just four rules, but is sufficient

to capture the entirety of the above reasoning.

The program defines six relations: the four input relations

New, Assign, Load, and Store, and the two derived relations

VarPointsTo and HeapPointsTo which hold the solution.

To analyze the code fragment above, we represent it as a set

of facts that are fed to a Datalog solver:

New("o1", "A").
New("o2", "B").
Assign("o3", "o2").
Store("o2", "f", "o1").
Load("r", "o3", "f").

Running the solver infers a solution containing the fact Var-

PointsTo("r", "A"), as expected. As an example of how

to understand a Datalog program, consider the second rule in

Figure 1. This rule states that if there is an assignment from

v2 to v1 and v2 points to some object h2, then v1 points to

h2. Furthermore, notice the mutual recursion in the rules for

VarPointsTo and HeapPointsTo in Figure 1.
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VarPointsTo(v1, h1) :́ New(v1, h1).
VarPointsTo(v1, h2) :́ Assign(v1, v2),

VarPointsTo(v2, h2).
VarPointsTo(v1, h2) :́ Load(v1, v2, f),

VarPointsTo(v2, h1),
HeapPointsTo(h1, f, h2).

HeapPointsTo(h1, f, h2) :́ Store(v1, f, v2),
VarPointsTo(v1, h1),
VarPointsTo(v2, h2).

Figure 1. A field-sensitive subset-based points-to analysis

for an object-oriented programming language, e.g. Java.

2.2 Points-to and Dataflow Analysis with FLIX

The analysis presented in the previous section is sufficient

if we are only interested in points-to information. However,

many static analysis clients require additional information.

Consider a client that wants to discover division-by-zero

errors. This analysis requires both points-to and dataflow

analysis to determine if the denominator in a division is

possibly zero. We can use a constant propagation analysis or

interval analysis to discover this information. However, as

argued in the introduction, such analyses are not expressible

in Datalog, but they are expressible in FLIX.

In this section, we show how to develop such an analysis,

but for the sake of exposition, we use the parity lattice instead

of the constant propagation or interval lattices. As a reminder,

the parity lattice tracks whether numbers are odd or even.

Figure 2 shows a FLIX program that extends the points-to

analysis with a dataflow analysis.

The FLIX language is composed of two parts: a pure

functional programming language for specifying lattices,

their associated operations, and monotone functions over

their elements, combined with a logic language for expressing

rules over relations and lattices. Bringing everything together

is a set of declarations to specify the names, arities, and types

of functions, relations, and lattices. The syntax of FLIX is

inspired by Scala and Datalog.

We briefly walk through the program in Figure 2.

The enum definition on lines 5–9 defines a tagged union

of the elements of the parity lattice. In FLIX, references to a

tag must be prefixed by the enum name, thus Parity.Odd

refers to the odd element of the parity enum.

The function definitions on lines 13–20 and 23–24 each

define a named function, the type of its arguments, its return

type, and its expression body. FLIX functions are used to

define the components of a lattice and to express monotone

filter and transfer functions. Here, the leq function defines

the partial order of parity lattice elements. FLIX functions are

expressed using a small, pure functional language.

The lattice definition on lines 28–29 associates a 5-tuple

pK,J,Ď,\,[q of lattice components with a type, where

K is the bottom element, J is the top element, Ď is the

partial order, \ is the least upper bound, and [ is the greatest

lower bound. A lattice definition is a built-in mechanism for

defining what is essentially an instance of a type class [62].

1 // an almost complete Flix program.
2

3 // an enum definition that defines
4 // the elements of the parity lattice.
5 enum Parity {
6 case Top,
7 case Even, case Odd,
8 case Bot
9 }

10

11 // a function definition that defines
12 // the partial order of the parity lattice.
13 def leq(e1: Parity, e2: Parity): Bool =
14 match (e1, e2) with {
15 case (Parity.Bot, _) => true
16 case (Parity.Even, Parity.Even) => true
17 case (Parity.Odd, Parity.Odd) => true
18 case (_, Parity.Top) => true
19 case _ => false
20 }
21

22 // additional lattice definitions ...
23 def lub(e1: Parity, e2: Parity): Parity = ...
24 def glb(e1: Parity, e2: Parity): Parity = ...
25

26 // association of the lattice operations
27 // with the parity type.
28 let Parity<> = (Parity.Bot, Parity.Top,
29 leq, lub, glb);
30

31 // monotone filter and transfer functions ...
32 def isMaybeZero(e: Parity): Bool = ...
33 def sum(e1: Parity, e2: Parity): Parity = ...
34

35 // declaration of relations ...
36 rel Load(var: Str, base: Str, field: Str);
37 rel VarPointsTo(var: Str, obj: Str);
38 // additional declarations ...
39

40 // declaration of lattices ...
41 lat IntVar(var: Str, Parity<>);
42 lat IntField(var: Str, field: Str, Parity<>);
43 // additional declarations ...
44

45 // VarPointsTo and HeapPointsTo rules ...
46

47 // additional dataflow analysis rules ...
48

49 IntVar(v, i) :́ Int(v, i).
50 IntVar(v, i) :́ Assign(v, v2), IntVar(v2, i).
51 IntVar(v, i) :́ Load(v, v2, f),
52 VarPointsTo(v2, h),
53 IntField(h, f, i).
54 IntField(h, f, i) :́ Store(v1, f, v2),
55 VarPointsTo(v1, h),
56 IntVar(v2, i).
57

58 // rule for addition of parity elements.
59 IntVar(r, sum(i1, i2)) :́ AddExp(r, v1, v2),
60 IntVar(v1, i1).
61 IntVar(v2, i2).
62

63 // rule for potential divisioń bý zero errors.
64 ArithmeticError(r) :́ DivExp(r, v1, v2),
65 IntVar(v2, i2),
66 isMaybeZero(i2).

Figure 2. A subset-based, field-sensitive points-to analysis

combined with a dataflow analysis expressed in FLIX.
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Like Haskell, FLIX allows only one type class instance per

type. The definition assumes that the supplied functions

satisfy the properties of a complete lattice; otherwise, the

semantics of the FLIX program is undefined. The notation

Parity<> is used to distinguish the parity type from the

parity type class instance.

The relation declaration on line 36 (and 37) defines a

relation by specifying its name and its attributes (columns),

together with their names and types. The lattice declaration

on line 41 (and 42) defines a lattice by specifying its name

and its attributes (columns), together with their names and

types. The last attribute of a lattice declaration must have a

type equipped with a lattice. Intuitively, the IntVar lattice is

the map lattice from strings to elements of the parity lattice.

A rule definition in FLIX is similar to a Datalog rule, but

is more expressive. First, a FLIX rule may contain function

applications in the last term of the head predicate of a rule.

For example, consider line 59:

IntVar(v, sum(v1, v2)) :́ ...

Here, the sum function is used to compute the abstract sum of

two parity lattice elements. The function must be monotone

in its arguments. Second, a FLIX rule may use a filter function

which is monotone over the booleans. For example, consider

lines 64–66:

ArithmeticError(r) :́ DivExp(r, v1, v2),
IntVar(v2, i2),
isMaybeZero(i2).

Here, the filter function isMaybeZero selects only those

parity elements i2 that may be zero, i.e. the Parity.Even

and Parity.Top elements.

This example demonstrates three key features of FLIX:

the ability to express lattices, monotone filter functions that

select a subset of lattice elements, and monotone transfer

functions that express mappings between lattice elements.

These features go beyond what is possible in Datalog and

give FLIX its expressive power.

2.3 Design Choice: Language or Framework?

A natural question to ask is why implement FLIX as a

programming language instead of as a framework? First,

we want the logic language and the functional language

to receive equal treatment. If we had embedded FLIX in

a functional language, expressing rules would have suffered,

and vice versa. Second, we want full control over the language

to ensure that the choices of evaluation strategy and data

structures are up to the implementation.

At the same time, we want to ensure interoperability with

the JVM, providing access to the existing ecosystem of static

analysis frontends and tools. FLIX allows programmers to

access JVM types and methods, and use them in their defini-

tions of lattices and functions. Furthermore, FLIX provides

an API for accessing computed solutions.

3. Semantics

In this section, we present the model-theoretic semantics of

Datalog, and then extend that semantics to FLIX. To do so,

we abstract away some details of the full FLIX language.

3.1 Model-Theoretic Semantics of Datalog

Syntax. A Datalog program P is a set of rules of the

form A0 ð A1, . . . , An where A0 is the head of the rule,

A1, . . . , An is the body of the rule, and each Ai is an atom.

A fact is a rule with an empty body. An atom has the form

ppt1, . . . , tnq, where p is a predicate symbol and t1, . . . , tn
are terms. A term is either a variable x or a constant value v.

Values are typically primitive integers and strings. Datalog

has no operations on primitive values nor any compound

datatypes. Figure 3 shows the syntax of Datalog programs.

Herbrand Universe and Base. We now briefly describe

the Herbrand interpretation of a Datalog program. This is a

simple and elegant approach, commonly used to define the

meaning of Datalog programs [9]. The Herbrand universe U

of a Datalog program P is the set of all possible ground

terms. A ground term is a non-variable term, i.e. a constant

value appearing somewhere in the program P . The Herbrand

universe is finite since the program P contains a finite number

of constants. The Herbrand base B of a Datalog program P

is the set of all ground atoms. A ground atom is a predicate

symbol that occurs in P with its arguments drawn from the

Herbrand universe. Note that the Herbrand base respects the

arity of the predicates. The Herbrand base is also finite. As

an example, given the Datalog program

Ap1q. Bp2, 3q. Apxq : ´ Bpx, _q.

the Herbrand universe U is

U “ t1, 2, 3u

and the Herbrand base B is

B “

$

’

’

&

’

’

%

Ap1q, Ap2q, Ap3q,

Bp1, 1q, Bp1, 2q, Bp1, 3q,

Bp2, 1q, Bp2, 2q, Bp2, 3q,

Bp3, 1q, Bp3, 2q, Bp3, 3q

,

/

/

.

/

/

-

Intuitively, the Herbrand base can be thought of as the set of

“all possible facts.”

Interpretations and Models. An interpretation I of a Data-

log program P is a subset of the Herbrand base B. A ground

atom A is true w.r.t. an interpretation I if A P I . A conjunc-

tion of atoms A1, . . . , An is true w.r.t. an interpretation if

each atom is true in the interpretation. A ground rule is true

if either the body conjunction is false or the head is true. A

ground rule is a rule where all atoms are ground.

A model M of a Datalog program P is an interpretation,

i.e. a subset of the Herbrand base B, that makes each ground

197



P P Prog ::“ R1, . . . , Rn

R P Rules ::“ A0 ð A1, . . . , An

A P Atoms “ ppt1, . . . , tnq

t P Terms “ x | v

p P Predicates “ is a finite set of predicate symbols.

x P Variables “ is a finite set of variables.

v P Values “ is a finite set of values.

Figure 3. Grammar of Datalog programs.

instance of each rule in P true. A ground instance of a rule

is obtained by replacing every variable in a rule with a term

from the Herbrand universe. A model M is minimal if there

is no other model M 1 such that M 1 Ă M . Consider the

following interpretations of the previous program:

I1 “ tAp1qu

I2 “ tAp1q, Bp2, 3qu

I3 “ tAp1q, Ap2q, Ap3q, Bp2, 3qu

I4 “ tAp1q, Ap2q, Bp2, 3qu

Here, I1 and I2 are not models because they do not make each

ground rule instance true. I3 is a model, but is not minimal

as evidenced by the true minimal model I4.

Computing the Minimal Model. The model-theoretic se-

mantics does not tell us how to compute the minimal model.

This is desirable because it separates the definition of what

the solution is from how to compute it. Thus, different Data-

log solvers can use different evaluation strategies while still

agreeing on the solution.

The model-theoretic semantics does provide some insight

into how a solver can be implemented. Let I be an inter-

pretation of a Datalog program P . We define the immediate

consequence operator Tp of I as the head atoms of each

ground rule instance that is satisfied by I . In other words, we

can think of I as the current set of facts, and TppIq as the

set of facts that can be derived from I and P in “one-step.”

The minimal model of P can then be computed by repeated

iteration of TppIq starting from the empty set of facts, i.e. it is

the least fixed point of T8

p pHq. This strategy is called “naïve”

evaluation since it re-evaluates every rule whenever a new

fact is inferred. A better strategy is discussed in Section 3.7.

3.2 From Datalog to FLIX

We now extend the Datalog semantics to FLIX.

A complete lattice ℓ is a 6-tuple ℓ “ pE,K,J,Ď,\,[q,

where E is a set of elements, K P E is the least element,

J P E is the greatest element, Ď is the partial order on E, \
is the least upper bound, and [ is the greatest lower bound.

We want to allow static analysis implementors to express

their own lattices and operations on them. In order to do that,

we extend the values of Datalog with enums (tagged unions),

tuples, and sets. Furthermore, we add a pure functional

programming language. For the purpose of this paper, this

language can be thought of as a minimal lambda calculus,

but the full FLIX language is richer. It includes algebraic

data types, pattern matching, collections (e.g. lists, sets, and

maps), and a static type system.

We make six changes to the Datalog semantics to extend

it with lattices. In brief, the steps are:

1. Associate every predicate symbol with a lattice.

2. Extend the Herbrand universe with lattice elements.

3. Partition the Herbrand base into cells and introduce a

complete lattice on all ground atoms in each cell.

4. Introduce compactness of an interpretation.

5. Extend the definition of a model to incorporate the partial

order on ground atoms.

6. Introduce a partial order on models and update the defini-

tion of minimality.

We now describe each step in greater detail.

First, we change the grammar of Datalog programs to

associate every predicate symbol with a lattice ℓ. Thus, for

example, a fact and a rule now look like

AℓpOddq. Bℓpxq : ´ Aℓpxq.

where ℓ refers to a lattice, in this case, the parity lattice.

Second, we change the definition of the Herbrand uni-

verse U to include all possible ground terms T and lattice

elements E of the FLIX program P . The Herbrand base B

remains the same, but uses the new definition of the Herbrand

universe U . Notice that the Herbrand universe (and conse-

quently the Herbrand base) may be infinite if a lattice has

infinitely many elements.

Third, we partition the Herbrand base such that two ground

atoms A “ pℓpv1, . . . , vnq and B “ p1

ℓ1 pv1

1
, . . . , v1

mq are in

the same cell S if they have the same predicate symbol (i.e.

pℓ “ p1

ℓ1 ), the same number of terms (i.e. n “ m), and the

first n ´ 1 terms are equal (i.e. v1 “ v1

1
^ ¨ ¨ ¨ ^ vn´1 “

v1

m´1
). Notice that all predicate symbols in the same cell have

the same associated lattice ℓ. For each cell S, we introduce a

complete lattice LS “ pS,KS ,JS ,ĎS ,\S ,[Sq. Given two

ground atoms A “ pℓpv1, . . . , vnq and B “ pℓpv
1

1
, . . . , v1

nq,

we define their partial order as follows: if n “ 1 then A ĎS B

when v1 Ď v1

1
. Otherwise, if n ą 1 then A ĎS B when

v1 “ v1

1
^ ¨ ¨ ¨ ^ vn´1 “ v1

n´1
and vn Ď v1

n. In words,

in order for A ĎS B, the first n ´ 1 components of A and

B must match exactly, and the last component of A must

be less than or equal to the last component of B according

to the partial order defined for the lattice ℓ. The definition

of the remaining lattice components is straightforward. The

intuition is that unary predicates correspond to a single lattice

element whereas multi-ary predicates correspond to a single

tuple from a map lattice. To ensure a finite number of cells,

we restrict the terms that can appear in a ground atom. Recall
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that the Herbrand universe U “ T Y E consists of ground

terms T and lattice elements E . We require that in every

ground atom pℓpv1, . . . , vnq, the values v1, . . . , vn´1 must

be drawn from T , and vn must be drawn from E . Since T

consists of terms that syntactically appear in the program P ,

it is finite and consequently the number of cells is finite.

Fourth, we introduce the notion of compactness. An

interpretation I is compact iff every cell S in the partition of

I has one unique element.

Fifth, an interpretation is still a subset of the Herbrand

base, but we change the definition of when an interpretation

is a model. Specifically, a ground atom A is true w.r.t. an

interpretation I if DA1 P I such that A ĎS A1, where A and

A1 are in the same cell S. As before, a conjunction of atoms

A1, . . . , An is true w.r.t. an interpretation if each atom is true

in the interpretation. Finally, a ground rule is true if either the

body conjunction is false or the head is true. A model M of

P is then an interpretation that makes each ground instance

of each rule in P true.

Sixth, we define a partial order ĎM on models. Given two

models M1 and M2, we say that M1 is less than or equal to

M2 if for every ground atom A1 P M1, belonging to cell S,

there is a ground atom A2 P M2, also belonging to S, such

that A1 ĎS A2. A model M is minimal if it is compact and

there is no other model M 1 such that M 1 ĎM M .

Example. The FLIX program defined over the parity lattice

ℓ “ ptK,J, Even, Oddu,K,J,Ď,\,[q with the facts

AℓpEvenq. AℓpOddq. BℓpOddq.

has the Herbrand universe

U “ tK,J, Even, Oddu

and the Herbrand base

B “

"

AℓpKq, AℓpEvenq, AℓpOddq, AℓpJq,

BℓpKq, BℓpEvenq, BℓpOddq, BℓpJq

*

An interpretation of the program is a subset of B, e.g.:

I1 “ tAℓpJqu

I2 “ tAℓpJq, BℓpKqu

I3 “ tAℓpJq, BℓpOddq, BℓpJqu

I4 “ tAℓpEvenq, AℓpOddq, BℓpOddqu

I5 “ tAℓpJq, BℓpJqu

I6 “ tAℓpJq, BℓpOddqu

The interpretations I1 and I2 are not models of the program

since neither makes BℓpOddq true. I3 and I4 are models, but

they are not compact. I5 is a compact model, but it is not

minimal as evidenced by the true minimal model I6.

Example. The FLIX program defined over the sign lattice

ℓ “ ptK,J, Neg, Zer, Posu,K,J,Ď,\,[q with the facts

Aℓp1, Posq. Aℓp2, Posq. Aℓp2, Negq.

has the Herbrand universe

U “ t1, 2,K,J, Neg, Zer, Posu

and the Herbrand base

B “

"

Aℓp1,Kq, Aℓp1, Negq, Aℓp1, Zerq, . . .

Aℓp2,Kq, Aℓp2, Negq, Aℓp2, Zerq, . . .

*

An interpretation of the program is a subset of B, e.g.:

I1 “ tAℓp1,Jqu

I2 “ tAℓp1, Posq, Aℓp1, Negq, Aℓp2,Jqu

I3 “ tAℓp1,Jq, Aℓp2,Jqu

I4 “ tAℓp1, Posq, Aℓp2,Jqu

Here, I2, I3 and I4 are models, I3 and I4 are compact, but

only I4 is minimal.

Least Upper and Greatest Lower Bounds. To clarify how

lattices are used in FLIX, suppose that we have the two facts:

A(Odd). B(Even).

Then the FLIX program with the two rules

R(x) :́ A(x). R(x) :́ B(x).

has RpJq in the minimal model since J is the only element

greater than or equal to both Odd and Even. On the other

hand, the FLIX program with the one rule

R(x) :́ A(x), B(x).

has RpKq in the minimal model since K is the only element

less than or equal to both Odd and Even.

Computing the Minimal Model. We have described how

to compute the minimal model of a Datalog program as the

least fixed point of the immediate consequence operator Tp.

We can adopt a similar strategy for FLIX programs with one

change: the domain of the operator is restricted to compact

interpretations, and since the set of one-step derivable facts

may not be compact, we must compute the least upper bound

in every cell of the interpretation before we apply Tp again.

Ullman [59, Chapter 3] presents a naïve evaluation algo-

rithm for Datalog with a detailed proof that it terminates and

computes the minimal model. The proof relies on two key

properties: monotonicity of the immediate consequence oper-

ator and finiteness of ascending chains of interpretations. By

being careful to maintain monotonicity in defining the FLIX

version of the immediate consequence operator, and by insist-

ing that the FLIX lattices be of finite height, we can apply the

same proof to a naïve evaluation algorithm for FLIX.
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3.3 The Full FLIX Language

The FLIX language is richer than the core formalism pre-

sented in the previous subsection. In this subsection, we de-

scribe two important extensions: monotone filter functions

and monotone transfer functions. Without these features, pro-

gramming in FLIX would be severely limited. Monotonicity

of these functions is necessary to maintain the monotonicity

of the immediate consequence operator, which in turn is nec-

essary for the correctness of the naïve evaluation algorithm.

Monotone Filter Functions. A monotone filter function

is a function from one or more lattice elements to true

or false, and is monotone when the booleans are ordered

false ă true. For example, assume that isMaybeZero is

a function over the parity lattice elements. Then the rule

ArithmeticError(r) :́
DivExp(r, v1, v2),
IntVar(v2, i2),
isMaybeZero(i2).

captures a possible division-by-zero error for result variable

r when there is an expression r = v1 / v2, the value of

variable v2 is the parity lattice element i2, and i2 is possibly

zero according to the filter function. The important point

here is that the DivExp relation and IntVar lattice are both

explicitly represented and tabulated, whereas isMaybeZero

is a reference to a function expression, i.e. a piece of code.

Thus, filter functions may operate over domains that are too

difficult or even impossible to tabulate.

We add filter functions to the model-theoretic semantics

with the following changes:

1. Extend the definition of a rule to allow filter function

applications fip. . . q in addition to atoms.

2. Extend the definition of when a ground rule is true.

A conjunction of atoms A1, . . . , An and filter function

applications f1, . . . , fm is true w.r.t. an interpretation if

each atom is true in the interpretation, and if each filter

function evaluates to true. A ground rule is true if either

the body conjunction is false or the head is true.

Monotone Functions. A monotone function is a function

from one or more lattice elements to a lattice element, which

is order-preserving. These functions are used to implement

“transfer” functions in FLIX. For example, in the rule

IntVar(r, sum(i1, i2)) :́
AddExp(r, v1, v2),
IntVar(v1, i1),
IntVar(v2, i2).

the monotone function sum computes the abstract addition

of two parity lattice elements i1 and i2. We highlight two

important design choices here.

First, we require such transfer functions to be strict and

monotone. Strictness ensures that when a function is applied

to K it returns K. Monotonicity requires that the function is

order-preserving and is necessary to ensure that the immedi-

ate consequence operator is also monotone.

Second, we only allow non-filter functions to appear in

the last term of the head predicate of a rule. This ensures that

the implementation can evaluate the rule body first, in any

order, and then evaluate the head. If non-filter functions could

appear in the body, then one could write

R(z) :́ A(x), B(y, f(x)), C(z, g(y)).
R(x) :́ A(y, f(x)), B(z, g(y)), C(x, h(z)).

where the first rule implicitly enforces an evaluation order1.

Moreover, it is not clear how to evaluate the second rule.

Thus, we disallow non-filter functions in rule bodies.

We add monotone “transfer” functions to the model-

theoretic semantics with the following changes:

1. Extend the definition of a rule to allow the last term of a

head predicate to contain function applications fip. . . q.

2. Extend the definition of a ground rule instance to allow

function applications in the last term of a head predicate.

3. Extend the definition of when a ground atom is true.

A ground atom A with function applications is true iff

after all function applications are evaluated, the resulting

ground atom is true.

3.4 Compositionality of FLIX Programs

An important property of Datalog programs is compositional-

ity: given two disjoint Datalog programs P1 and P2, i.e. two

programs that share no predicate symbols, the union of their

rules is a Datalog program P . The model of P is the union of

the models of P1 and P2. FLIX retains this property, allowing

composition of analyses. For example, given a constant prop-

agation analysis and a reachability analysis, we can combine

the two to obtain a conditional constant propagation analysis.

We share information between the two analyses by introduc-

ing the shared predicates isReachablepsq, isTruepsq, and

isFalsepsq. The constant propagation analysis infers facts

for the isTruepsq and isFalsepsq predicates and uses the

isReachablepsq predicate, while the reachability analysis

does the opposite.

In abstract interpretation terminology, the composition-

ality discussed above is known as the direct product [14].

Given two analyses, e.g. sign and parity, the direct product

corresponds to running each analysis independently. No in-

formation is shared and neither lattice is used to refine the

other. For example, the element pZer, Oddq in the Cartesian

product Sign ˆ Parity does not correspond to any concrete

value and could be replaced by pK,Kq. The reduced product

uses this idea to refine and share information between lat-

tices [11, 14]. The logical product is more precise than the

reduced product, and under certain conditions can be con-

structed automatically [29]. FLIX provides the direct product

automatically, but the reduced and logical products must be

implemented manually.

1 Since the functions f and g are opaque and may not have an inverse.
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3.5 Negation, Stable Models, and Stratification

Pure Datalog does not allow negation: every atom in the

body of a rule must appear unnegated. Many proposals

have been made to extend logic and Datalog programs with

negation [20, 21, 23, 26, 36]. A fundamental challenge is how

to define the semantics of programs such as:

A(x) :́ !B(x). B(x) :́ !A(x).

To overcome these issues, several solutions including stable

models [25], well-founded semantics [61], and many-valued

logic [23] have been developed. A common solution is to re-

strict the use of negation to so-called stratifiable programs [2].

A program is stratifiable if it satisfies a simple syntactic prop-

erty which ensures that no negative cycles occur in the pro-

gram. FLIX currently does not support any form of negation,

but it is something we plan to add.

3.6 The Theoretical Expressive Power of Datalog

We have previously stated that certain static analyses are

“inexpressible” in pure Datalog. Strictly speaking, this is

not true: a well-known result from logic and complexity

theory shows that the data complexity of Datalog is PTIME-

complete [17]. The data complexity of a program is the

complexity when the input is restricted to facts (i.e. the rules

are kept fixed) and PTIME is the class of all polynomial

time algorithms. Intuitively, any algorithm which runs in

polynomial time can be encoded as a Datalog program.

Naturally, this includes polynomial time static analyses.

However, this encoding simulates a Random Access Ma-

chine that tabulates all steps taken by the algorithm, and

furthermore, requires operations such as integer arithmetic to

be represented as finite relations. While this is sufficient for

an existence proof, such tabulation is completely impractical

for an implementation.

3.7 The Semi-naïve Evaluation Strategy

The model-theoretic semantics of FLIX describes the struc-

ture of the minimal model of a program, but not how to

compute it. This is a good thing, since it gives the fixed-point

solver maximum freedom in the choice of data structures and

evaluation strategy. As explained before, the model-theoretic

semantics inspires a naïve evaluation strategy based on the

immediate consequence operator. The idea is to repeatedly

re-evaluate every rule while maintaining a monotonically

growing set of facts. While this strategy is simple and correct,

it is hopelessly inefficient.

A better strategy, known as semi-naïve evaluation, tracks

the dependencies between predicates and predicate symbols

appearing in rule bodies. Under this evaluation strategy,

whenever a new fact for a predicate p is inferred, only the

rules containing p in their body are re-evaluated, and only for

the new fact. For example, in the FLIX program

SelfLoop(x) :́ Edge(x, x).
Path(x, y) :́ Edge(x, y).
Path(x, z) :́ Path(x, y), Edge(y, z).

if the fact Path(1, 2) is inferred, then only the third rule

is re-evaluated under the environment tx ÞÑ 1, y ÞÑ 2u.

The first and second rules are not re-evaluated. With naïve

evaluation, all three rules would be re-evaluated.

We use a variant of semi-naïve evaluation, adapted for

FLIX by taking the compactness requirement into account.

For example, in the FLIX program

A(Odd).
B(Even).
A(x) :́ B(x).
R(x) :́ isMaybeZero(x), A(x).

we initially infer the two facts ApOddq and BpEvenq, which

cause evaluation of the two rules. This infers the new fact

ApEvenq. Next, we must re-evaluate the third rule, but we

must not use the environment tx ÞÑ Evenu since this breaks

the compactness requirement. Instead, we must compute the

least upper bound of ApOddq \ ApEvenq “ ApJq, and re-

evaluate the third rule under the environment tx ÞÑ Ju. This

gives the correct minimal model M where RpJq P M .

In addition to naïve evaluation, Ullman [59, Chapter 3]

also defines and proves correctness of a semi-naïve evaluation

algorithm for Datalog. The semi-naïve algorithm maintains a

so-called incremental relation for each predicate. Whenever

the algorithm evaluates a rule with head predicate pi to yield

a new relation P 1

i , the incremental relation is computed as the

set difference ∆Pi “ P 1

i z Pi, where Pi is the old relation for

the predicate pi. The incremental relation contains only the

facts that were newly computed in P 1

i , that were not already

contained in the old relation Pi.

Then, the process of evaluating a rule is modified to the

following procedure. Letting n be the number of atoms in

the body of the rule, the rule is evaluated n times. Each

time, one of the n atoms is instantiated using the incremental

relation ∆Pi corresponding to the predicate specified by the

atom. All other atoms of the body of the rule are instantiated

using their corresponding old relations Pi. Informally, this

ensures that each newly-inferred fact in ∆Pi is considered

with all of the existing facts in the old relations for the

other atoms. Ullman proves that each such incremental

evaluation step yields the same resulting relation for the

head predicate as the corresponding full evaluation step in

the naïve algorithm. Furthermore, he proves inductively that

every iteration of the semi-naïve algorithm infers the same

facts as the corresponding iteration of the naïve algorithm

(but using less work), and therefore the final outputs of the

two algorithms are the same.

To adapt semi-naïve evaluation to FLIX, we must first

adapt the definition of the incremental relation. In Datalog,

P 1

i Ě Pi by the monotonicity of rule evaluation, so P 1

i “
∆Pi Y Pi. This latter property is important because each

step of semi-naïve evaluation can be informally thought of

as determining ∆Pi Y Pi, while the corresponding step of

naïve evaluation computes P 1

i . However, in FLIX, it is not

generally true that P 1

i Ě Pi because rule evaluation applies

a least upper bound in each cell S to obtain a compact
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relation P 1

i . Instead of P 1

i Ě Pi, FLIX ensures that P 1

i Ě Pi.

An alternative definition of the incremental relation ∆Pi is

therefore necessary so that P 1

i “ ∆Pi \ Pi, analogously to

the Datalog property P 1

i “ ∆Pi Y Pi. We have defined a

set of facts P to be compact if it contains one ground atom

for each cell S; let us denote this ground atom gapP, Sq.

When P 1

i and Pi are the relations for a predicate before and

after evaluating a rule, we define their incremental relation

∆Pi “ t gapP 1

i , Sq | S P cells^gapP 1

i , Sq Ľ gapPi, Squ. In

words, the incremental relation ∆Pi contains every ground

atom from P 1

i which is strictly greater than the ground atom

for the same cell in Pi. Since P 1

i Ě Pi, this definition of ∆Pi

does imply the desired property P 1

i “ ∆Pi \ Pi.

The process of evaluating a rule can then be incremen-

talized in the same way as for Datalog, in that the rule is

evaluated as many times as there are atoms in its body, and

each time, one of the atoms is instantiated with the FLIX ver-

sion of the incremental relation ∆Pi. The resulting relation

for the head predicate is then made compact by computing a

least upper bound for each cell S. We can show that this incre-

mental rule evaluation step yields the same resulting relation

for the head predicate as the corresponding full evaluation

step, in the same way as the analogous incremental evaluation

step does in Datalog. Therefore, the inductive proof of the

equivalence of outputs of naïve and semi-naïve evaluation for

Datalog then applies analogously to FLIX.

4. Evaluation

We have implemented a compiler and runtime for FLIX. The

entire implementation is roughly 30,000 lines of Scala code.

The toolchain includes a parser, a type checker, an interpreter,

an indexed database, and a semi-naïve fixed-point solver. The

source code is freely available on GitHub.2

We evaluate the usefulness of FLIX by implementing three

existing static analyses: the Strong Update analysis [39] and

the IFDS and IDE algorithms [52, 53].

4.1 The Strong Update Analysis

The Strong Update analysis is a points-to analysis for C pro-

grams that propagates singleton points-to sets flow sensitively

and larger sets flow insensitively. The paper presents the anal-

ysis as a set of constraints (Figure 7 in that paper) and then as

an imperative algorithm (Figure 9 in that paper). The latter is

implemented in C++ and evaluated [39]. The FLIX implemen-

tation shown in Figure 4 follows the constraint specification

of the analysis directly: there is a one-to-one correspondence

between the FLIX rules and the constraints from Figure 7 of

the Strong Update paper. The PtSU function is defined as:

ptsurℓspaq fi

#

surℓspaq if surℓspaq ‰ J

ptpaq if surℓspaq “ J

The monotonicity of this definition depends on the unstated

fact that surℓspaq Ď ptpaq when surℓspaq is a singleton set.

2 https://github.com/flix

enum SULattice {
case Top,
case Single(Str),
case Bottom

}

def filter(t: SULattice, b: Str): Bool =
match t with {
case SULattice.Bottom => false
case SULattice.Single(p) => b == p
case SULattice.Top => true

}

Pt(p, a) :́ AddrOf(p, a).
Pt(p, a) :́ Copy(p, q), Pt(q, a).
Pt(p, b) :́ Load(l, p, q), Pt(q, a), PtSU(l, a, b).
PtH(a, b) :́ Store(l, p, q), Pt(p, a), Pt(q, b).

SUBefore(l2, a, t) :́
CFG(l1, l2),
SUAfter(l1, a, t).

SUAfter(l, a, t) :́
SUBefore(l, a, t),
Preserve(l, a).

SUAfter(l, a, SULattice.Single(b)) :́
Store(l, p, q),
Pt(p, a), Pt(q, b).

PtSU(l, a, b) :́
PtH(a, b),
SUBefore(l, a, t),
filter(t, b).

Figure 4. FLIX version of the Strong Update analysis [39].

SUBefore and SUAfter is the information before and af-

ter label l, written ptsurlspaq and ptsurlspaq in the paper.

Preserve is the complement of the Kill set.

In the corresponding FLIX rule, monotonicity is explicit: the

rule first selects all b P ptpaq, and then uses the function

filter to reject all elements other than p in the case that

surℓspaq is the singleton tpu.

4.2 IFDS

IFDS is a framework that can be instantiated to solve a large

class of interprocedural context-sensitive dataflow analyses,

the interprocedural finite distributive subset analyses [52].

The paper that defines the framework presents it as a one-

page algorithm in pseudocode that contains many worklist

updates and implicit quantifications. Anecdotally, many peo-

ple find the algorithm difficult to understand, and checking

its correctness requires a long proof.

Figure 5 declaratively specifies the desired properties of

an IFDS solution. It is also a set of FLIX rules that can be

executed to compute the solution. The rules compute a set of

path edges, each leading from a data point d1 at the start of

a procedure to a data point d3 at an instruction m within the

procedure, and a set of summary edges that summarize the

transfer function of each call to a procedure. To implement

a specific dataflow analysis, one must provide the transfer

functions of that analysis. These are specified to FLIX in

the form of three functions eshIntra (intraprocedural),
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PathEdge(d1, m, d3) :́
CFG(n, m),
PathEdge(d1, n, d2),
d3 <́ eshIntra(n, d2).

PathEdge(d1, m, d3) :́
CFG(n, m),
PathEdge(d1, n, d2),
SummaryEdge(n, d2, d3).

PathEdge(d3, start, d3) :́
PathEdge(d1, call, d2),
CallGraph(call, target),
EshCallStart(call, d2, target, d3),
StartNode(target, start).

SummaryEdge(call, d4, d5) :́
CallGraph(call, target),
StartNode(target, start),
EndNode(target, end),
EshCallStart(call, d4, target, d1),
PathEdge(d1, end, d2),
d5 <́ eshEndReturn(target, d2, call).

EshCallStart(call, d, target, d2) :́
PathEdge(_, call, d),
CallGraph(call, target),
d2 <́ eshCallStart(call, d, target).

Result(n, d2) :́
PathEdge(_, n, d2).

Figure 5. FLIX implementation of the IFDS analysis [52].

eshCallStart (call site to start node), and eshEndReturn

(end node to return site). The special arrow syntax in the first

rule d3 <- eshIntra(n, d2) binds d3 to each element in

the set returned by the call.

It is essential that the transfer functions be specified as

functions; they cannot be tabulated and given as input to any

solver in the form of relations. The reason is that the overall

goal of the IFDS algorithm is to compute a set of reachable

pairs pn, dq. If we knew the set of arguments pn, dq for which

eshIntra needs to be tabulated (the set of all arguments

with which the analysis will call eshIntra), then we would

already know which pairs are reachable and there would be

no need to run the IFDS analysis. Alternatively, tabulating

eshIntra for all possible pairs pn, dq would be much more

costly than performing the IFDS algorithm itself, which calls

eshIntra only on the much smaller subset of pairs pn, dq
that are reachable.

Another important detail not discussed in the IFDS pa-

per is that the algorithm applies not only the eshCallStart

function (in the third rule) but also its inverse (in the fourth,

SummaryEdge rule). Since computing the inverse is usually

impractical, any implementation of the algorithm must tab-

ulate the function for the arguments on which it is called in

the forward direction. The FLIX program explicitly tabulates

the function in the EshCallStart relation. As a result, the

relation can be consulted in both directions in the third and

fourth rule, and this can be written declaratively as it is in the

original formulation of the IFDS algorithm.

Both of these issues are discussed by Naeem et al. [48].

JumpFn(d1, m, d3, comp(long, short)) :́
CFG(n, m),
JumpFn(d1, n, d2, long),
(d3, short) <́ eshIntra(n, d2).

JumpFn(d1, m, d3, comp(caller, summary)) :́
CFG(n, m),
JumpFn(d1, n, d2, caller),
SummaryFn(n, d2, d3, summary).

JumpFn(d3, start, d3, identity()) :́
JumpFn(d1, call, d2, _),
CallGraph(call, target),
EshCallStart(call, d2, target, d3, _),
StartNode(target, start),

SummaryFn(call, d4, d5, comp(comp(cs, se), er)) :́
CallGraph(call, target),
StartNode(target, start),
EndNode(target, end),
EshCallStart(call, d4, target, d1, cs),
JumpFn(d1, end, d2, se),
(d5, er) <́ eshEndReturn(target, d2, call).

EshCallStart(call, d, target, d2, cs) :́
JumpFn(_, call, d, _),
CallGraph(call, target),
(d2, cs) <́ eshCallStart(call, d, target).

InProc(p, start) :́ StartNode(p, start).
InProc(p, m) :́ InProc(p, n), CFG(n, m).

Result(n, d, apply(fn, vp)) :́
ResultProc(proc, dp, vp),
InProc(proc, n),
JumpFn(dp, n, d, fn).

ResultProc(proc, dp, apply(cs, v)) :́
Result(call, d, v),
EshCallStart(call, d, proc, dp, cs).

Figure 6. FLIX implementation of the IDE analysis [53].

4.3 IDE

IDE is a more general framework that can be instantiated

to solve a larger class of interprocedural context-sensitive

dataflow analyses, the interprocedural distributive environ-

ment analyses [53]. The original presentation of IDE as an

imperative algorithm requires two pages. Conceptually, the

IDE framework is a direct extension of the IFDS framework,

but that is not obvious at all from the worklist-based algo-

rithmic specifications in the two papers. The IDE framework

computes the same edges as IFDS, but each edge is decorated

with a representation of a so-called micro-function. This cor-

respondence between IFDS and IDE is immediately clear

from the declarative specification of IDE shown in Figure 6.

Notice that the rules mirror those of the IFDS implementa-

tion (with the names PathEdge and SummaryEdge replaced

with JumpFn and SummaryFn to match the terminology used

in the IFDS and IDE papers). In the IDE algorithm, each

rule has just one additional component corresponding to the

micro-function on each edge. The first, second, and fourth

rules use a FLIX function comp in the head to compute the

composition of micro-functions.
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def comp(t1: Transformer, t2: Transformer): Transformer = match (t1, t2) with {
case (_, BotTransformer) => BotTransformer
case (BotTransformer, NonBotTransformer(a, b, Value.Bot)) => BotTransformer
case (BotTransformer, NonBotTransformer(a, b, Value.Cst(k))) => NonBotTransformer(0, k, Value.Cst(k))
case (BotTransformer, NonBotTransformer(a, b, Value.Top)) => NonBotTransformer(0, 0, Value.Top)
case (NonBotTransformer(a2, b2, c2), NonBotTransformer(a1, b1, c1)) =>
NonBotTransformer(a1 ∗ a2, (a1 ∗ b2) + b1, lub(sum(prod(c2, a1), b1), c1))

}

Figure 7. Micro-function join operation for the example IDE analysis [53].

To instantiate the IDE framework with a specific anal-

ysis, one must not only implement the transfer functions

eshIntra, eshCallStart, and eshEndReturn, but also

specify two lattices: the value lattice V that is the domain and

range of each micro-function, and the micro-function lattice

F that efficiently represents certain functions from V Ñ V .

Thus, the formulation of the IDE algorithm requires both

functions and lattices.

The IDE paper uses a running example of a linear constant

propagation analysis in which V is the constant propagation

lattice. The elements of the micro-function lattice F are λl.K
and functions of the form λl.pa ˆ l ` bq \ c, where a and b

are integers and c is an element of the constant propagation

lattice. Figure 7 shows the FLIX implementation of the micro-

function composition operation comp that is called from the

rules. The functions that implement Ď and \ on the lattice of

micro-functions have a similar structure.

4.4 Shortest Paths

We have shown how to express several static analyses in

FLIX, but FLIX is applicable to other types of fixed-point

problems. For example, to compute all-pairs shortest paths,

let pN ,8, 0,ě, min, maxq be a lattice over the natural num-

bers. Then we can compute the shortest paths as follows:

Dist(y, d + c) :́ Dist(x, d), Edge(x, y, c).

4.5 Performance of the Current FLIX Solver

We have not yet looked closely at the performance of the

FLIX solver. Instead, we have focused on language design

and semantics. For that reason, the solver contains many inef-

ficiencies that can be overcome with additional engineering.

For example, primitive values (e.g. integers) are represented

as (boxed) Java objects, functions (including the partial order

and least upper bound) are evaluated using an AST-based

interpreter, rules are always evaluated left-to-right instead of

using a cost-plan, relations are represented as hash maps but

some would be more efficiently represented as dense arrays,

and our index selection strategy is not optimal.

Table 1 compares the performance of three implementa-

tions of the Strong Update analysis on the benchmark pro-

grams evaluated in the Strong Update paper. First, we imple-

mented the Strong Update analysis in Datalog by embedding

the Strong Update lattice within the relational powerset lat-

tice as described in the introduction. We used the well-known

DLV Datalog solver [38] to run this implementation.

The Datalog version of the analysis did not scale beyond

the 458.sjeng benchmark (13.9 kSLOC), which it analyzed in

425 seconds. The FLIX formulation of the analysis analyzed

the same benchmark in 27 seconds, and was able to scale up

to the 300.twolf benchmark (20.5 kSLOC). We confirmed

that both implementations compute the same results. The C++

implementation in LLVM from the original Strong Update

paper is still much faster. This is partly, but not entirely, due

to the constant overheads of the current implementation of

FLIX. In addition, the C++ implementation uses a clever data

structure to implement a map from abstract objects. Thanks

to subtle properties of the Strong Update analysis, the data

structure can avoid explicitly representing the objects whose

corresponding lattice value is either J or K in the common

case. FLIX, on the other hand, explicitly represents all objects

whose corresponding lattice value is either a singleton or J.

The number of objects whose lattice value is J is very large,

which accounts for much of the performance difference.

We also evaluated the performance of the IFDS analysis

described previously. As a concrete example of a specific

IFDS analysis, we selected the object abstraction from the

multi-object typestate analysis of Naeem et al. [47]. In the

FLIX implementation, we provided an interface that enables

monotone transfer functions to be implemented using Java or

Scala code, rather than the FLIX functional language. This

made it possible for the declarative FLIX IFDS program to

call the same implementations of the transfer functions that

were evaluated in the original typestate analysis paper.

Specifically, our evaluation compares two implementa-

tions of the object abstraction analysis. The baseline is the

complete implementation that was used in the original paper.

It includes a hand-coded imperative Scala implementation of

the IFDS algorithm, and Scala implementations of the IFDS

functions that instantiate the IFDS framework to compute

the object abstraction analysis. The FLIX implementation

includes the declarative IFDS formulation, which is instan-

tiated with the same Scala implementations of the object

abstraction analysis functions. Thus, the evaluation compares

the hand-coded imperative implementation of IFDS with the

declarative FLIX implementation. We verified that both im-

plementations produce the same outputs.

The running times of the two implementations on the six

DaCapo benchmarks [6] that were evaluated in the original

paper are shown in Table 2. In general, the current FLIX im-
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Benchmark DLV Flix C++

Program kSLOC Input Facts Memory (MB) Time (s) Memory (MB) Time (s) Time (s)

470.lbm 1.2 1,205 17 1.8 142 0.9 0.05

181.mcf 2.5 3,377 114 30.9 650 3.0 0.08

429.mcf 2.7 3,392 115 31.8 630 3.1 0.09

256.bzip2 4.7 5,017 49 5.9 244 1.8 0.09

462.libquantum 4.4 6,196 215 32.3 877 5.2 0.14

164.gzip 8.6 9,259 463 133.4 1,271 9.4 0.14

401.bzip2 8.3 11,844 1,100 696.4 2,264 17.5 0.30

458.sjeng 13.9 20,154 1,077 424.8 3,107 27.1 0.27

433.milc 15.0 22,147 - timeout 3,846 88.6 0.45

175.vpr 17.8 25,977 - - 4,039 99.7 0.54

186.crafty 21.2 32,189 - - 3,556 73.0 0.41

197.parser 11.4 32,606 - - 5,104 663.5 0.92

482.sphinx3 25.1 42,736 - - 6,767 399.7 1.06

300.twolf 20.5 44,041 - - 5,273 222.8 1.25

456.hmmer 36.0 68,384 - - - timeout 2.22

464.h264ref 51.6 89,898 - - - - 3.41

seven more benchmarks

Table 1. Summary of performance results for the Strong Update analysis. Timeout means more than 15 minutes.

Program
Scala Flix

Slowdown
Time (s) Time (s)

luindex 133.6 366.7 2.7x

antlr 176.7 437.3 2.5x

hsqldb 187.4 469.2 2.5x

bloat 203.5 584.1 2.9x

pmd 247.7 680.1 2.7x

jython 4,614.7 14,344.8 3.1x

Table 2. Summary of performance results for IFDS.

plementation of the IFDS algorithm is about 3x slower than

the imperative Scala implementation. Importantly, the perfor-

mance of FLIX scales with the imperative implementation.

5. Related Work

Static Analysis Frameworks. Many static analysis frame-

works have been proposed over the years. The Program

Analysis Generator (PAG) generates C code for static an-

alyzers from specifications of lattices and descriptions of

transfer functions [44]. The TJ Watson WALA library is a

static analysis library written in Java [22]. WALA includes

implementations of many common static analyses such as

points-to analysis, class hierarchy analysis, and the IFDS al-

gorithm [52]. Soot is a Java bytecode analysis framework that

has seen wide use in compilation and as a frontend for other

static analyses [60]. Hoopl is a generic dataflow analysis and

transformation framework written in Haskell [51]. Frama-C

is a source code analysis platform for C programs written

in OCaml [16]. A weakness of all these frameworks is the

implicit assumptions that they make about the analysis, for

instance, the existence of a control-flow graph or other in-

termediate representation, and the choice of flow-sensitivity,

context-sensitivity, and memory abstraction. FLIX, like Dat-

alog, makes no such assumptions and is applicable to least

fixed point problems in general.

Datalog. Datalog has roots in the database community as a

general-purpose query language, but has found uses in many

areas of computer science. A comprehensive introduction

to Datalog is given by Ceri et al. [9]. A distilled version is

given by Huang et al. who argue that interest in Datalog is

re-emerging [32]. Further evidence of this is provided by the

Datalog 2.0 Workshop [19].

The use of negation in logic programs, such as Datalog and

Prolog, has long been studied and there is extensive literature

on the subject [2, 20, 21, 23, 25, 26, 36]. The theoretical

complexity of logic programs, including Datalog, has also

been studied extensively [17].

Datalog has been used in several static analysis tools.

codeQuest is a tool for querying various aspects of the source

code of a program [30]. Binary decision diagrams (BDDs)

have been used to implement efficient points-to analyses

specified as relations, both using a custom relational language

and Datalog [40, 63]. The Doop framework is a precise and

scalable context-sensitive points-to analysis for Java specified

in Datalog [7, 54, 55].

FLIX has some similarities to Bloom, a programming

language designed to ensure consistency of distributed pro-

grams [13]. Bloom, like FLIX, takes inspiration from Datalog

and adds support for lattices and monotone functions, but

for different reasons. In Bloom, the purpose is to ensure con-

fluence, i.e. that regardless of the order in which messages

are received over the network, the same result is computed.

Unlike Datalog and FLIX, where the user is interested in

some minimal model, Bloom programs are intended to run

continuously as network services.
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Logic Programming. Prolog [10, 56] is a Turing-complete

logic programming language related to Datalog. Every Dat-

alog program is also a Prolog program; however, Prolog

allows constructors, negation, and the cut operator. Datalog

programs can be efficiently solved by Prolog engines that use

tabulation, e.g. XSB [57]. Such Prolog engines have been

used to implement different types of program analyses [18].

FLIX is less expressive than Prolog, but ensures that every

program terminates and has a unique minimal model. In fu-

ture work we plan to compare FLIX to Prolog engines.

Constraint Logic Programming (CLP) schemes extend

logic programming with a decidable background theory, such

as lists, trees, and linear arithmetic [12, 33, 34, 41]. Intuitively,

a CLP program is a set of Horn clauses, each equipped with

a formula over the background theory. During evaluation,

term unification is augmented with the decision procedure of

the theory. CLP has been used in program verification and

abstract interpretation [5, 24].

Alternation-free Least Fixed Point (ALFP) logic is an ex-

tension of Horn clauses with nested universal and existential

quantification, stratified negation, and disjunction [49, 50]. It

is more powerful than Datalog, but is still guaranteed to have

a minimal solution, provided that the program is stratifiable.

Answer Set Programming (ASP) is a logic tailored to

solving NP-hard problems that may involve non-monotonic

reasoning [8, 42, 43]. A key development was the introduc-

tion of stable models (later known as answer sets) that allow

models to be defined even in the presence of negative cy-

cles in the implication graph [25]. FLIX does not yet support

negation, so the challenges of monotonicity are restricted to

ensuring that user-defined functions are monotone.

Prolog, CLP, ALFP, ASP, and other logic languages all

offer various trade-offs in terms of performance, expressive

power and safety (i.e. the existence of least models). FLIX

is yet another point in this large design space and is more

general than Datalog, but less general than Prolog.

Static Analyzers based on Horn Clauses. Logic programs,

such as Prolog and CLP programs, have also been the subject

of static analysis. In this line of research, static analyzers

such as PLAI [46] compute the least fixed point of a set of

Horn clauses over one or more lattices. These lattices and

their associated operations are specified as “plug-ins” to the

analysis. A key difference between these techniques and FLIX

is the choice of evaluation strategy: FLIX uses bottom-up

semi-naïve evaluation rather than top-down evaluation with

tabulation, as in XSB. These developments have been used

to translate object-oriented programs into constraint Horn

clauses on which the static analysis is then performed [45].

6. Conclusion

We have presented FLIX, a declarative programming lan-

guage for expressing and solving least fixed point problems,

particularly static program analyses. FLIX is inspired by Dat-

alog and extends it with lattices and monotone functions. We

have defined a model-theoretic semantics for FLIX that is

the foundation for any FLIX fixed-point solver, independent

of its specific evaluation strategy. We have demonstrated the

expressiveness of FLIX by implementing several well-known

static analyses, including the IFDS and IDE algorithms. The

declarative formulation of these analyses clearly reveals their

close relationship. Experimental results show that the current

FLIX interpreter is slower than hand-crafted analyzers, but

we plan to address this in future work.

7. Future Work

We briefly outline three directions for future work:

Negation. FLIX does not support negation. We believe it is

straightforward to extend the semantics and implementation

to support stratified FLIX programs. However, we want to

explore whether stratification is the right choice for specifying

static analyses. Furthermore, we want to look at potentially

interesting connections between negation and lattices.

Safety. Every Datalog program is guaranteed to terminate

with the unique minimal model. As discussed previously, a

FLIX program is also guaranteed to terminate with the mini-

mal model, provided that every lattice is actually a complete

lattice, of finite height, and every function is strict and mono-

tone. Unfortunately, a FLIX programmer may inadvertently

violate one or more of the required properties when speci-

fying a lattice or function. We plan to investigate the use of

automatic program verification techniques to guarantee that

FLIX programs are meaningful.

Performance. As discussed in the evaluation, the current

implementation of FLIX has many opportunities for improved

performance, such as eliminating boxing, replacing the inter-

preter with compiled JVM bytecode, and using query plan-

ning and better index selection.
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