
YESTERDAY, MY PROGRAM WORKED.
TODAY, IT DOES NOT. WHY?

Andreas Zeller

Presented by: Ming-Ho Yee
November 22, 2016

- Unconventional title

- Doesn’t really tell you what it contributes, but rather points out the

motivation (and does it well)

- The abstract and introduction also use “marketing tricks”

- Intro starts with “The GDB people have done it again.”

- But overall, the paper was clearly written, and easy to read

- And the idea isn’t very complicated

1

Impact of Delta Debugging

■ Introduced “delta debugging,” an automated debugging technique

– First in a series of papers

■ Won the ACM SIGSOFT Impact Paper Award (2009)

■ Over 100 citations

– Still being cited today!

2

- Elegant idea is part of its influence

- Easy to understand and implement, lots of different applications

- This paper introduced “delta debugging,” an automated debugging technique

- It was the first in a series of papers

- Won an Impact Paper Award in 2009, and was the keynote at ESEC/FSE 2009

- Sadly, the video of the keynote is corrupted

- Paper has over 100 citations

- Still being cited today (2016)

2

* e5f2d16 Merge pull request #64 [TODAY]

|\

| * ce58db1 ...

| * 647ad5c ...

| |\

| | * ced43ca ...

| | |\

| | * | 7b6133a ...

| * | | 2b6f479 ...

| |/ /

| * | 9c39a3c ...

| * | 616c8de ...

| * | f7b61fa ...

| * | a183a3d ...

| |\ \

| | * | 4cd7c04 ...

| * | | 1f2b4dd ...

| * | | 433dc2c ...

| * | | cfef439 ...

* | | | 757a75d ...

|\ \ \ \

| |_|_|/

|/| | |

| * | | 989a77b ...

|/ / /

* | | 6f777cf Merge pull request #63 [YESTERDAY]

| ...
| 186 ++++++++++----------
| 186 ++++++++++----------
| 38 ++--
| 207 ++++++++++++++++++++++
| 11 ++
| 156 +++++++++++++++++
| 36 +++-
| 19 ++
| 74 +++++++-
| 135 +++++++-------
| 267 ++++++++++++++++++++++++++++
| 430 ++++++++++++++++++++++-----------------------
| 38 ++--
| 6 +
| 5 +
| 121 +++----------
| 175 ++++++++++---------
| 130 ++++++++++++--
| 111 ++++--------
| 14 +-
| 3 +-
| 521 +++
| 393 +++
| 154 ++++++++--------
| 162 ++++++++---------

100 files changed, 5355 insertions(+), 3869 deletions(-)

3

- The motivation is quite simple, and expressed clearly in the title

- Working program + changes -> no longer works

- Here’s an example git log

- Maybe you’re lucky and have version control, and can narrow the bug to a

single commit

- But what if it’s a giant commit?

- What if you don’t have version control?

- In the paper, the example was GDB, which did not have version control at the time

- Almost 200,000 lines of code were changed

- Can we narrow down the changes automatically?

3

Prerequisites for Delta Debugging

■ Set of all possible changes: � = Δ�, Δ�, … Δ	

– A change set
 ⊆ � is called a configuration.

– An empty configuration
 = ∅ is called a baseline.

■ Function
��
 ∶ 2� → {✓,✗,????}

– ✓ - Pass

– ✗ - Fail

– ???? - Unresolved

■ Assumption:

��
 ∅ = ✓ ∧
��
 � = ✗

4

• What do we actually need for delta debugging?

• A set of all possible changes

• Note: changes ≠ commit, change = changed line

• A change set is a configuration (no constraints, there are 2^n possible

configurations)

• An empty configuration is a baseline

• A test function that takes a configuration and will PASS, FAIL, or be UNRESOLVED

• Unresolved is when your program doesn’t build, or maybe you get an

infinite loop

• Our current situation:

• Baseline (yesterday) passes

• Applying all changes (today) fails

4

Minimal Failure-Inducing Change Set

■ GoalGoalGoalGoal: Find the minimal failure-inducing change set

■ A change set
 ⊆ � is failure-inducing if the following holds:

∀
�(
 ⊆
� ⊆ � →
��

� ≠ ✓)

■ A failure-inducing change set � ⊆ � is minimal if the following holds:

∀
 ⊂ � (
��

 ≠ ✗)

5

- Goal: find the minimal failure-inducing change set

- What does this mean?

- A change set is failure-inducing if any change set that includes it will fail

- Actually, it’s ”does not pass” because it might be unresolved

- By definition, C is failure-inducing, but that’s not very helpful

- Failure-inducing change set is minimal if removing any change means it won’t fail

(i.e. pass or unresolved)

5

Three Useful Properties

■ MonotoneMonotoneMonotoneMonotone

∀
 ⊆ �(
��

 = ✗ → ∀
� ⊇

��

� ≠ ✓)
∀
 ⊆ �(
��

 = ✓ → ∀
� ⊆
(
��

� ≠ ✗))

■ UnambiguousUnambiguousUnambiguousUnambiguous

∀
�,
� ⊆ �(
��

� = ✗ ∧
��

� = ✗ →
��

� ∩
� ≠ ✓)

■ ConsistentConsistentConsistentConsistent

∀
 ⊆ �(
��

 ≠ ?)

6

- There are three properties that, if true, we can take advantage of

- Reduce the amount of searching

- Monotone

- If a change causes a failure, then any configuration that includes it will also

fail (or be unresolved)

- i.e. it won’t start working again

- Corollary

- If we have monotonicity, then if we have found a change set that

passes, none of its subsets will fail

- Makes searching more efficient, so you can skip searching a passing

configuration’s subsets

- Unambiguous

- Failure is caused by one change set, and not by two disjoint ones

- i.e. we don’t have multiple bugs or multiple causes of the same bug

- For economy: once we’ve found a failure-inducing change set, don’t need

to search the complement

- Another way to read this constraint: if we have two change sets that fail,

they are related

- Their intersection should be non-empty (and should not pass)

6

- Consistent

- We always get a pass or fail, no indeterminate results

- It’s easy if these three properties hold

- Trickier but still possible if they don’t hold

- Most important practical problem is inconsistency

6

Delta Debugging

!!
 = !!�
, ∅

 !!�
, " =

let
�,
� ⊆
 s.t.
� ∪
� =
 ∧
� ∩
� = ∅ ∧
� ≈
� ≈
%

�

in

 if |
| = 1

 !!�
�, " if
��

� ∪ " = ✗

!!�
�, " if
��

� ∪ " = ✗

!!�
�,
� ∪ " ∪ !!�
�,
� ∪ " otherwise

Invariant: Invariant: Invariant: Invariant:
��
 " = ✓ ∧
��

 ∪ " = ✗

7

- This is the pseudocode from the paper

- Start by assuming all three properties true (monotone, unambiguous, consistent)

- Algorithm is divide-and-conquer, like binary search

- Have a helper function to make the recursion cleaner

- If c has only one change, then it is failure-inducing, so done

- Otherwise, we partition c into disjoint subsets c1, c2 (approximately the same size)

- Check c1, if it fails, c1 contains a failure-inducing change

- Check c2, if it fails, c2 contains a failure-inducing change

- Otherwise, interference

- Combination of changes in c1 and c2 causes failure

- Need to search in c1, with all changes from c2 applied

- Will find the changes in c1 that is combined with some changes in

c2

- And then do the same for c2, and union the two changes found

- Invariant: r always passes, c U r always fails

- We keep r around to handle interference

- But we’re interested in searching c

7

Delta Debugging Example

8

testConfigurationStep

!!�(1,2,3,4,5,6,7,8 , ∅)

testConfigurationStep

✓....43211

✓8765....2

!!�(1,2,3,4 , 5,6,7,8) !!�(5,6,7,8 , 1,2,3,4)testConfigurationStep

✓....43211

✓8765....2

✓8765..213

✗876543..4

!!�(3,4 , 5,6,7,8)

testConfigurationStep

✓....43211

✓8765....2

✓8765..213

✗876543..4

✗8765.3..5 !!�(3 , 5,6,7,8)

return 3

!!�(5,6,7,8 , 1,2,3,4)testConfigurationStep

✓....43211

✓8765....2

✓8765..213

✗876543..4

✗8765.3..5

✗..6543216

!!�(5,6 , 1,2,3,4)

testConfigurationStep

✓....43211

✓8765....2

✓8765..213

✗876543..4

✗8765.3..5

✗..6543216

✓...543217

!!�(6 , 1,2,3,4)

return 6

testConfigurationStep

✓....43211

✓8765....2

✓8765..213

✗876543..4

✗8765.3..5

✗..6543216

✓...543217

..6..3..Result

- If there’s no interference, it’s just binary search

- Here’s an example with interference, taken from the paper

- Number represents an included change, dot represents excluded change

- Let’s step through the example

- Start the call with 8 changes. Test each half, both pass, so interference

- Need to make two recursive calls

- Make two tests, one of them fails, so we know failure is in {3,4} U {5,6,7,8}

- Recurse, and find that 3 is the failure-inducing change

- Now back to the other recursive call

- We only need on test, to se that error is in {5,6} U {1,2,3,4}

- We recurse, see 5 is OK, so 6 is the error

- And we take the union of 3 and 6

8

Non-Monotonicity and Ambiguity

■ NonNonNonNon----monotonemonotonemonotonemonotone configuration: a later change might “undo” a failure

– But “today” is broken, so there exists another failure-inducing change

■ AmbiguousAmbiguousAmbiguousAmbiguous configuration: multiple failure-inducing change sets

– Delta debugging will find one of them

9

- The simple algorithm requires three properties to be true

- What if they don’t hold?

- Recall: monotone means adding changes to a broken configuration doesn’t fix it

- This lets us search more efficiently

- If the configuration isn’t monotone, then some change ends up fixing the

failure

- But since “today” is broken, there must be another failure-inducing change

- Delta debugging will find one of the failures (and it might take more time)

- Recall: unambiguous means there is only one failure-inducing change set

- OK if there are multiple

- Algorithm will find one of them

- Then we can fix it, and run delta debugging again

9

Inconsistency

■ Sometimes the outcome of a test cannot be determined

– E.g. change cannot be applied, program will not build, program does
not execute correctly

■ Approach: split
 into smaller subsets

– ∅ (“yesterday”) and � (“today”) are consistent

– Want a configuration closer to “yesterday” or “today”

10

- Inconsistency is a big problem

- When the outcome of a test cannot be determined

- Change cannot be applied (e.g. conflict), program doesn’t build,

program doesn’t work

- Non-monotone and ambiguous configurations are minor in comparison,

and easily dealt with

- Inconsistency will be more common, and is harder to manage

- The basic approach is to split c into smaller subsets. Here’s why:

- Yesterday and today are consistent

- c is already in subsets, but they’re all unresolved

- We want a configuration closer to yesterday (or today), so higher chances

of being consistent

- So apply fewer changes to yesterday (or remove fewer changes from today)

- We do this by splitting c into smaller subsets

10

Extending Delta Debugging

■ Generalize !! to test 7 subsets instead of 2

– Instead of testing
� and
�, test
8 and
89 , for all
8

■ Cases to consider:

– FoundFoundFoundFound (
��

8 = ✗)

– InterferenceInterferenceInterferenceInterference (
��

8 = ✓ ∧
��

89 = ✓)

– PreferencePreferencePreferencePreference (
��

8 = ???? ∧
��

89 = ✓)
■ Failure-inducing change in
8, but apply all changes in
89 for consistency

– Try againTry againTry againTry again (otherwise)

■ Resulting set may not be minimal

11

- The paper provides a formal definition of the extended delta debugging algorithm

- It’s a bit overwhelming, and contains all the details, plus some

optimizations

- Instead, I want to talk about the overall idea, and highlight the differences

- Original dd considers two subsets, and tests c1 and c2

- Extended dd considers n subsets, and also tests the complement (for all subsets)

- Like the original algorithm when n=2, but makes twice s many tests

- Two cases same as before

- If ci fails, then error is in ci, so recurse

- If ci and !ci pass, then interference, so search subsets of ci with !ci, union

subsets of !ci with ci

- New cases

- Preference, if ci unresolved but !ci passes

- Failure must be in ci, but !ci needed for consistency

- Search subsets of ci with !ci

- Like “half” of interference

- Try again

- If all fails, try again with twice as many subsets

- Resulting set may not be minimal (would need to search all subsets)

11

testConfiguration
8Step

Result

!!(�, ∅, 2)

testConfiguration
8Step

????....4321
�� =
��1

????8765....
�� =
��2

Result

!!(�, ∅, 4)

testConfiguration
8Step

????....4321
�� =
��1

????8765....
�� =
��2

????......21
��3

????....43..
��4

✓..65....
�:5

????87......
�;6

Result

testConfiguration
8Step

????....4321
�� =
��1

????8765....
�� =
��2

????......21
��3

????....43..
��4

✓..65....
�:5

????87......
�;6

????876543..
��7

????8765..21
��8

✗87..4321
�:9

????..654321
�;10

Result

!!({1,2,3,4,7,8}, 5,6 , 6)

testConfiguration
8Step

????....4321
�� =
��1

????8765....
�� =
��2

????......21
��3

????....43..
��4

✓..65....
�:5

????87......
�;6

????876543..
��7

????8765..21
��8

✗87..4321
�:9

????..654321
�;10

✓..65...1
:�11

????..65..2.
:�12

????..65.3..
::13

✓..654...
:;14

????.765....
:<15

✗8.65....
:=16

Result

testConfiguration
8Step

????....4321
�� =
��1

????8765....
�� =
��2

????......21
��3

????....43..
��4

✓..65....
�:5

????87......
�;6

????876543..
��7

????8765..21
��8

✗87..4321
�:9

????..654321
�;10

✓..65...1
:�11

????..65..2.
:�12

????..65.3..
::13

✓..654...
:;14

????.765....
:<15

✗8.65....
:=16

8.......Result 12

- An example with “preference” is just like “interference”

- Except that instead of making two recursive calls, preference only makes

one

- Doesn’t need to search the complement

- Here’s an example showing try again

- We start by searching the entire set of changes C, and want 2 subsets

- Note that c1 = !c2, c2 = !c1

- Both tests are unresolved, so we try again with 4 subsets

- None of them fail, so we try the 4 complements

- None of the complements pass, so we try again

- Note that 5,6 passed, and the complement failed

- So we only need 6 subsets, we just keep r=5,6 and don’t search them

- Finally we’re left with 8 as the failure-inducing change

12

Avoiding Inconsistency

■ Grouping related changesGrouping related changesGrouping related changesGrouping related changes

– E.g. group changes time, file or directory, identifiers referenced

■ Predicting test outcomesPredicting test outcomesPredicting test outcomesPredicting test outcomes

– Try to predict if a test is unresolved, instead of running it

– E.g. order changes, assume a change requires all previous changes

■ GDB case study:

– Original run: 470 tests in 48 hours

– Reducing inconsistencies: 289 tests in 20 hours

13

- As we saw, inconsistency can be pretty annoying to deal with

- And it’s probably very common

- If we consider a bunch of changes to a file, it’s “obvious” that many need to

be made together

- Paper outlines two general approaches for reducing inconsistency

- Grouping related changes

- Changes will be related, so we can try to guess

- Group by time, file or directory, the identifiers they reference, functions

- Predicting inconsistency

- E.g. order all changes, assume that a change requires all previous changes

- The paper discusses two case studies

- Using these two techniques greatly reduced the time to find the bug

- For GDB, they grouped by directory/file, and common identifiers

- If a build failed, they would scan errors for identifiers and automatically

apply changes that affected those identifiers

13

Related Work

■ Andreas Zeller has published several papers related to delta
debugging

– Reducing failure-inducing input

– Finding a failure-inducing thread schedule

– Isolating cause-effect chains

14

- Mentioned earlier that this paper was the first in a series

- Andreas Zeller continued research in this area, applying the delta

debugging algorithm for other purposes

- Reducing failure-inducing input

- Giant test case, e.g. compiling a C file, make it smaller and easier to

understand

- Failure-inducing thread schedule

- To debug multi-threaded applications

- First, use DEJAVU tool to record and replay thread schedules

- Then use delta debugging to find the difference between a working

and failing schedule

- Cause-effect chains

- Think of execution as a series of program states (with variables and

values)

- Isolate the relevant variables and values

- Similar to program slicing, but apparently more precise

14

Implementations

■ Eclipse plug-ins

■ MyDD Python module

■ Delta

■ C-Reduce

■ Lithium

■ WALA’s JS Delta

■ Flix delta debugging

15

- Andreas Zeller’s research group has a bunch of Eclipse plug-ins and a Python

module

- Plug-ins for debugging changes, input, and program state

- Most delta debugging implementations are used for minimizing input

- Delta and C-Reduce have been used to find compiler bugs

- Lithium has been used for Firefox

- WALA, the Watson Libraries for Analysis, from IBM, has a delta debugger for

reducing JS files

- Flix, the project I worked on at Waterloo, also has a delta debugging tool for

reducing the input facts

15

Conclusions

■ Delta debugging can automatically find find failure-inducing changes

■ Domain knowledge can help reduce inconsistencies

■ The delta debugging technique can be used to minimize test input

– Many implementations exist

16

- Delta debugging is nice because it can do all of this automatically

- You just need a set of changes, a test function, and an implementation of

delta debugging

- Dealing with inconsistencies becomes a problem, but delta debugging can cope

- If we use domain knowledge to group related changes, we can speed up

delta debugging

- There are other applications of the technique, instead of just finding changes

- Can minimize test cases, examine program state

- Many implementations use delta debugging to minimize test input

16

Discussion

■ Is delta debugging actually useful for finding changes?

– Most implementations use delta debugging to reduce test input

– Inconsistencies seem like they would be very, very common

■ What are other applications of delta debugging?

17

- Most of the implementations are for reducing test input

- Maybe because it’s easier to implement. But is it more useful?

- Who has heard of git bisect? Who has heard of delta debugging?

- My hunch is that inconsistencies are very very common

- I try to make my commits “atomic”, and even then, they can be very

large

- GDB case study uses a clever technique for reducing inconsistencies, by

searching for error messages

- Skeptical about how easy this was to implement, and it seems very

ad-hoc

- Open-ended question: what are other applications of delta debugging?

17

