YESTERDAY, MY PROGRAM WORKED.
TODAY, IT DOES NOT. WHY?

Presented by: Ming-Ho Yee
November 22, 2016

- Unconventional title
- Doesn’t really tell you what it contributes, but rather points out the
motivation (and does it well)
- The abstract and introduction also use “marketing tricks”
- Intro starts with “The GDB people have done it again.”
- But overall, the paper was clearly written, and easy to read
- Andthe idea isn’t very complicated

Impact of Delta Debugging

m Introduced “delta debugging,” an automated debugging technique
- First in a series of papers

m Won the ACM SIGSOFT Impact Paper Award (2009)

m Over 100 citations
- Still being cited today!

Elegant idea is part of its influence
- Easy to understand and implement, lots of different applications

This paper introduced “delta debugging,” an automated debugging technique
- It was the first in a series of papers

Won an Impact Paper Award in 2009, and was the keynote at ESEC/FSE 2009
- Sadly, the video of the keynote is corrupted

Paper has over 100 citations
- Still being cited today (2016)

e5f2d16 Merge pull request #64 [TODAY]

* ce58dbl ...
* 647ad5c ...
\
* ced43ca ...
N
* | 7b6133a ...
* | | 2b6f479 ...
7/
* | 9c39a3c ...
* | 616c8de ...
* | f7b6lfa ...

* | al83a3d ...
\ N\

* | 4cd7ce4d ... 121
1f2b4dd ... 175
433dc2c ... 130
cfefd39 ... 111

757a75d ... 14
3

521

393

154

162

100 files changed, 5355 insertions(+), 3869 deletions(-)

989a77b ...

6f777cf Merge pull request #63 [YESTERDAY]

The motivation is quite simple, and expressed clearly in the title
- Working program + changes -> no longer works

Here’s an example git log

Maybe you’re lucky and have version control, and can narrow the bug to a

single commit

But what if it’s a giant commit?

What if you don’t have version control?

In the paper, the example was GDB, which did not have version control at the time
- Almost 200,000 lines of code were changed

Can we narrow down the changes automatically?

Prerequisites for Delta Debugging

m Set of all possible changes: C = { A1,A,, ...A,}

- Achange set ¢ € C is called a configuration.

- An empty configuration ¢ = @ is called a baseline.
m Function test : 2¢ - {V,X,?}

- -Pass

- X -Fail

- ? -Unresolved

m Assumption:
test(@) = v Atest(C) = X

What do we actually need for delta debugging?
A set of all possible changes
* Note: changes # commit, change = changed line
* A change set is a configuration (no constraints, there are 2*n possible
configurations)
* An empty configuration is a baseline
A test function that takes a configuration and will PASS, FAIL, or be UNRESOLVED
* Unresolved is when your program doesn’t build, or maybe you get an
infinite loop
Our current situation:
* Baseline (yesterday) passes
* Applying all changes (today) fails

Minimal Failure-Inducing Change Set

m Goal: Find the minimal failure-inducing change set

m Achange set ¢ € C is failure-inducing if the following holds:

Ve'(ccc' cC —>test(c') #V)

m A failure-inducing change set B € C is minimal if the following holds:

Vc c B (test(c) # X)

- Goal: find the minimal failure-inducing change set
- What does this mean?
- A change set is failure-inducing if any change set that includes it will fail
- Actually, it’s “does not pass” because it might be unresolved
- By definition, Cis failure-inducing, but that’s not very helpful
- Failure-inducing change set is minimal if removing any change means it won’t fail
(i.e. pass or unresolved)

Three Useful Properties

m Monotone

Vc € C(test(c) = X = Vc' 2 c(test(c") #V))
Vc C C(test(c) =V = Vc' € c(test(c") # X))

m Unambiguous

Vcy, ¢, € C(test(cy) = X Atest(cy) = X = test(cy Necy) # V)

m Consistent

Vc € C(test(c) #7)

There are three properties that, if true, we can take advantage of
- Reduce the amount of searching
Monotone
- If a change causes a failure, then any configuration that includes it will also
fail (or be unresolved)
- i.e.it won't start working again
- Corollary
- If we have monotonicity, then if we have found a change set that
passes, none of its subsets will fail
- Makes searching more efficient, so you can skip searching a passing
configuration’s subsets
Unambiguous
- Failure is caused by one change set, and not by two disjoint ones
- i.e. we don’t have multiple bugs or multiple causes of the same bug
- For economy: once we’ve found a failure-inducing change set, don’t need
to search the complement
- Another way to read this constraint: if we have two change sets that fail,
they are related
- Their intersection should be non-empty (and should not pass)

- Consistent
- We always get a pass or fail, no indeterminate results
It’s easy if these three properties hold
- Trickier but still possible if they don’t hold
- Most important practical problem is inconsistency

Delta Debugging

dd(c) = dd,(c, D)

dd,(c,r) =
let ¢, ¢y € c St (c1 Ucy,=cAcgNcy,=0A|cq| = |cyl zlzil
c if|c] = 1
ddy(cq,7) iftest(c,ur) = X
dd,(c,, 1) if test(c,Ur) = X
dd,(cy,c, Ur)udd,(cy,ci UT) otherwise

Invariant: test(r) = v Atest(cUr) = X

This is the pseudocode from the paper
Start by assuming all three properties true (monotone, unambiguous, consistent)
Algorithm is divide-and-conquer, like binary search

- Have a helper function to make the recursion cleaner
If c has only one change, then it is failure-inducing, so done
Otherwise, we partition c into disjoint subsets c1, c2 (approximately the same size)
Check c1, if it fails, c1 contains a failure-inducing change
Check c2, if it fails, c2 contains a failure-inducing change
Otherwise, interference

- Combination of changes in c¢1 and c2 causes failure

- Need to search in c1, with all changes from c2 applied

- Will find the changes in c1 that is combined with some changes in
c2

- And then do the same for c2, and union the two changes found
Invariant: r always passes, ¢ U r always fails

- We keep r around to handle interference

- But we’re interested in searching c

Delta Debugging Example
ddz ({1,2,3,4,5,6,7,8},)

Step Configuration test
1| 1 2 3 4 v
2 . 5 6 7 8 v
4 3 4 5 6 7 8 X
6 3 4 5 6 X
7 3 4 5 . . . v

If there’s no interference, it’s just binary search
Here’s an example with interference, taken from the paper
- Number represents an included change, dot represents excluded change
Let’s step through the example
Start the call with 8 changes. Test each half, both pass, so interference
- Need to make two recursive calls
Make two tests, one of them fails, so we know failure is in {3,4} U {5,6,7,8}
Recurse, and find that 3 is the failure-inducing change
Now back to the other recursive call
We only need on test, to se that erroris in {5,6} U {1,2,3,4}
We recurse, see 5 is OK, so 6 is the error
And we take the union of 3 and 6

Non-Monotonicity and Ambiguity

m Non-monotone configuration: a later change might “undo” a failure
But “today” is broken, so there exists another failure-inducing change

Ambiguous configuration: multiple failure-inducing change sets
Delta debugging will find one of them

- The simple algorithm requires three properties to be true

What if they don’t hold?

Recall: monotone means adding changes to a broken configuration doesn’t fix it

This lets us search more efficiently

If the configuration isn’t monotone, then some change ends up fixing the
failure

But since “today” is broken, there must be another failure-inducing change
Delta debugging will find one of the failures (and it might take more time)

Recall: unambiguous means there is only one failure-inducing change set

OK if there are multiple
Algorithm will find one of them
Then we can fix it, and run delta debugging again

Inconsistency

m Sometimes the outcome of a test cannot be determined

E.g. change cannot be applied, program will not build, program does
not execute correctly

Approach: split ¢ into smaller subsets
@ (“yesterday”) and C (“today”) are consistent
Want a configuration closer to “yesterday” or “today”

10

- Inconsistency is a big problem

When the outcome of a test cannot be determined
- Change cannot be applied (e.g. conflict), program doesn’t build,
program doesn’t work
Non-monotone and ambiguous configurations are minor in comparison,
and easily dealt with
Inconsistency will be more common, and is harder to manage

- The basic approach is to split c into smaller subsets. Here’s why:

Yesterday and today are consistent

c is already in subsets, but they’re all unresolved

We want a configuration closer to yesterday (or today), so higher chances
of being consistent

So apply fewer changes to yesterday (or remove fewer changes from today)
We do this by splitting c into smaller subsets

10

Extending Delta Debugging

m Generalize dd to test n subsets instead of 2
- Instead of testing ¢; and c,, test ¢; and ¢;, for all ¢;

m Cases to consider:

- Found (test(c;) = X)

- Interference (test(c;) = v Atest(c;) = V)

- Preference (test(c;) = ? A test(c;) = V)

m Failure-inducing change in c¢;, but apply all changes in ¢; for consistency
- Try again (otherwise)

m Resulting set may not be minimal

11

The paper provides a formal definition of the extended delta debugging algorithm
- It’s a bit overwhelming, and contains all the details, plus some
optimizations
Instead, | want to talk about the overall idea, and highlight the differences
Original dd considers two subsets, and tests c1 and c2
Extended dd considers n subsets, and also tests the complement (for all subsets)
- Like the original algorithm when n=2, but makes twice s many tests
Two cases same as before
- If ci fails, then error is in ci, so recurse
- If ciand !ci pass, then interference, so search subsets of ci with !ci, union
subsets of !ci with ci
New cases
- Preference, if ci unresolved but !ci passes
- Failure must be in ci, but !ci needed for consistency
- Search subsets of ci with !ci
- Like “half” of interference
- Try again
- If all fails, try again with twice as many subsets
Resulting set may not be minimal (would need to search all subsets)

11

Step i Configuration test

1lcii=¢2 | 1 2 3 4 5 5 5 5 ?

2 (¢ =011 5 6 7 8 ?

4 C22 3 4 ?

5 Ca3 5 6 v

6 Co4 7 8 ?

71 @ 3 4 7 8| 2

8| o3 1 2 5 6 7 8| 2
9| oz 1 2 3 7 8| X

10| T 1 2 3 5 6 ?

11| ey 1 5 6 v

12| cap 2 5 6 ?

14| ca4 4 5 6 v

15| ¢35 5 6 7 ?

16| ¢4 5 6 X

Result 8 12

An example with “preference” is just like “interference”
- Except that instead of making two recursive calls, preference only makes
one
- Doesn’t need to search the complement
Here’s an example showing try again
We start by searching the entire set of changes C, and want 2 subsets
- Notethatcl=1c2,c2=Icl
Both tests are unresolved, so we try again with 4 subsets
- None of them fail, so we try the 4 complements
- None of the complements pass, so we try again
Note that 5,6 passed, and the complement failed
- So we only need 6 subsets, we just keep r=5,6 and don’t search them
- Finally we’re left with 8 as the failure-inducing change

12

Avoiding Inconsistency

Grouping related changes
E.g. group changes time, file or directory, identifiers referenced

m Predicting test outcomes
- Try to predict if a test is unresolved, instead of running it
- E.g. order changes, assume a change requires all previous changes

m GDB case study:
- Original run: 470 tests in 48 hours
- Reducing inconsistencies: 289 tests in 20 hours

13

As we saw, inconsistency can be pretty annoying to deal with
- And it’s probably very common
- If we consider a bunch of changes to a file, it’s “obvious” that many need to
be made together
Paper outlines two general approaches for reducing inconsistency
Grouping related changes
- Changes will be related, so we can try to guess
- Group by time, file or directory, the identifiers they reference, functions
Predicting inconsistency
- E.g. order all changes, assume that a change requires all previous changes
The paper discusses two case studies
- Using these two techniques greatly reduced the time to find the bug
- For GDB, they grouped by directory/file, and common identifiers
- If a build failed, they would scan errors for identifiers and automatically
apply changes that affected those identifiers

13

Related Work

m Andreas Zeller has published several papers related to delta
debugging

14

Mentioned earlier that this paper was the first in a series

Andreas Zeller continued research in this area, applying the delta
debugging algorithm for other purposes

Reducing failure-inducing input

Giant test case, e.g. compiling a C file, make it smaller and easier to
understand

Failure-inducing thread schedule

To debug multi-threaded applications

First, use DEJAVU tool to record and replay thread schedules

Then use delta debugging to find the difference between a working
and failing schedule

Cause-effect chains

Think of execution as a series of program states (with variables and
values)

Isolate the relevant variables and values

Similar to program slicing, but apparently more precise

14

Implementations

15

Andreas Zeller’s research group has a bunch of Eclipse plug-ins and a Python
module

- Plug-ins for debugging changes, input, and program state
Most delta debugging implementations are used for minimizing input
Delta and C-Reduce have been used to find compiler bugs
Lithium has been used for Firefox
WALA, the Watson Libraries for Analysis, from IBM, has a delta debugger for
reducing JS files
Flix, the project | worked on at Waterloo, also has a delta debugging tool for
reducing the input facts

15

Conclusions

Delta debugging can automatically find find failure-inducing changes

Domain knowledge can help reduce inconsistencies

The delta debugging technique can be used to minimize test input
Many implementations exist

16

- Delta debugging is nice because it can do all of this automatically
- You just need a set of changes, a test function, and an implementation of
delta debugging

- Dealing

with inconsistencies becomes a problem, but delta debugging can cope
If we use domain knowledge to group related changes, we can speed up

delta debugging

- Therea

re other applications of the technique, instead of just finding changes

- Can minimize test cases, examine program state

Many implementations use delta debugging to minimize test input

16

Discussion

Is delta debugging actually useful for finding changes?
Most implementations use delta debugging to reduce test input
Inconsistencies seem like they would be very, very common

What are other applications of delta debugging?

7

Most of the implementations are for reducing test input
Maybe because it’s easier to implement. But is it more useful?
Who has heard of git bisect? Who has heard of delta debugging?
My hunch is that inconsistencies are very very common
- | try to make my commits “atomic”, and even then, they can be very
large
GDB case study uses a clever technique for reducing inconsistencies, by
searching for error messages
- Skeptical about how easy this was to implement, and it seems very
ad-hoc
Open-ended question: what are other applications of delta debugging?

17

