
Flix: A Language for Static Analysis

Magnus Madsen, Ming-Ho Yee, Ondřej Lhoták

October 20, 2016

• Before coming to Northeastern, was a master’s student at Waterloo

• Worked on Flix as part of my master’s thesis project

• The Flix project is much larger than that

• Joint work with Ondřej Lhoták and Magnus Madsen

• We’ve also had undergraduates who have worked on Flix

• My focus has been the functional language back-end

• But today I’ll also talk more generally about Flix the language

1

Datalog

• A declarative programming language

• Syntactic subset of Prolog, but different semantics

• Every Datalog program terminates with a unique
solution

• [Ceri, Gottlob, and Tanca, TKDE 1989]

• Datalog has been used for points-to analyses

• Separates specification from implementation

• [Bravenboer and Smaragdakis, OOPSLA ‘09]

2

• Static analyses are usually very complicated and difficult to implement

• One approach to implementing static analyses is to use Datalog.

• Datalog is a declarative language: what not how.

• Syntactic subset of Prolog, but different semantics (declarative vs

operational)

• Specify the constraints of the analysis, and a Datalog solver finds the

solution.

• Much easier to understand and maintain than using Java or C++

• Every Datalog program terminates with a unique solution (unlike Prolog)

• Good intro: “What you always wanted to know about Datalog And Never

Dared to Ask”

• Many researchers have used Datalog to implement pointer analyses

• E.g. Doop framework by Bravenboer and Smaragdakis

2

Example: Transitive Closure

// Rules

Path(x, y) :- Edge(x, y).
Path(x, z) :- Path(x, y), Edge(y, z).

// Facts

Edge(1, 2).
Edge(2, 3).
Edge(3, 4).

3

Head Body

1

2

3

4

• Common example Datalog program

• Computes the transitive closure (i.e. reachability) of a graph.

• Path and Edge are relations

• Edge relation is input, we start with known inputs

• Path relation is output, we want to compute the paths

• In a Datalog program, we use rules to infer new facts.

• If the body of a rule is true, then the head must also be true.

• “If Edge(x, y) holds, then so must Path(x, y)”

• “If Path(x, y) and Edge(y, z) hold, then so must Path(x, z)”

• This is a very elegant way of expression the problem (and notice the recursion in the second rule)

3

Limitations of Datalog

• No user-defined lattices

• No functions

• Poor interoperability

4

{x,y,z}

{x,y} {x,z} {y,z}

{x} {y} {z}

∅

• But Datalog has some limitations:

• No user-defined lattices (you have the powerset lattice)

• No functions

• Poor interoperability

• Some analyses cannot be expressed in Datalog.

• It’s possible to work around some of these limitations, but performance

suffers

• And the workarounds fail if the domain is infinite

• Using Datalog with existing tools and front-ends is difficult.

• Typically extract input facts from program under analysis, and save as text

file

• Datalog communicates with other tools through a textual interface

4

A Language for Static Analysis

• Flix extends Datalog with lattices and functions

• Logic language

• Functional language

• [Madsen, Yee, and Lhoták, PLDI ’16]

• Flix is implemented on the JVM

5

• Flix extends Datalog with user-defined lattices and monotone functions.

• Specify analysis constraints in the logic language.

• Based on Datalog and supports user-defined lattices.

• Express user-defined functions in the functional language.

• Pure and strict, supports let-bindings, first-class functions, pattern

matching.

• Supports the Java integer types, including BigInteger. Also supports

tags and tuples.

• Flix is implemented on the JVM (in Scala).

• Interoperability with JVM languages.

• Call Flix from a JVM language, call JVM code from Flix.

5

The Anatomy of a DatalogDatalogDatalogDatalog Rule

� �̅ ⇐ � �̅ , … , � �̅ .

Head

Body

Predicates

Terms: Variables or Constants

6

• Let’s look at how Flix differs from Datalog

• Here’s what a Datalog rule looks like, but with math syntax

• The right-hand side is the body.

• If the body is satisfied, then the left-hand side, the head, must also be

satisfied.

• The head and body are composed of atoms.

• Each atom is a predicate symbol with variable or constant terms.

6

The Anatomy of a FlixFlixFlixFlix Rule

�ℓ �̅, 	 �̅ ⇐
 �̅ , �ℓ �̅ , … , �ℓ �̅ .

Filter Function

Transfer Function

7

• Flix rules are based on Datalog rules.

• We still have a head and a body.

• But each predicate symbol is associated with a lattice.

• The body may contain a list of filter functions.

• If the body is satisfied and the filter functions evaluate to true, then

the head must be satisfied

• The head atom may contain transfer functions.

• These functions map lattice elements to lattice elements.

• Note: filter and transfer functions must be monotone and lattices must have finite

height to guarantee termination

7

Constant Propagation

enum Constant {
case Top, case Cst(Int), case Bot

}

def leq(e1: Constant, e2: Constant): Bool =
match (e1, e2) with {

case (Bot, _) => true
case (Cst(n1), Cst(n2)) => n1 == n2
case (_, Top) => true
case _ => false

}

def lub(e1: Constant, e2: Constant): Constant = …
def glb(e1: Constant, e2: Constant): Constant = …

8

• 13:00 to get here.

• Here is what constant propagation looks like in Flix.

• Some details are omitted for brevity.

• First, look at the functional code.

• We define a tagged union, Constant.

• Represents elements of the constant propagation lattice.

• We define the three lattice operations:

• leq, lub, glb

• leq is an example of pattern matching.

8

Constant Propagation

def sum(e1: Constant, e2: Constant): Constant =
match (e1, e2) with {

case (_, Bot) => Bot
case (Bot, _) => Bot
case (Cst(n1), Cst(n2)) => Cst(n1 + n2)
case _ => Top

}

9

• sum is a monotone transfer function

• Adding anything to Bot is Bot

• Adding two constants creates a new constant

• Everything else is Top

9

Constant Propagation

// analysis inputs

rel AsnStm(r: Str, c: Int) // r = c
rel AddStm(r: Str, x: Str, y: Str) // r = x + y

// analysis outputs

lat LocalVar(k: Str, v: Constant)

// rules

LocalVar(r, Cst(c)) :- AsnStm(r, c).

LocalVar(r, sum(v1, v2)) :- AddStm(r, x, y),
LocalVar(x, v1),
LocalVar(y, v2).

10

• Now for the logic code.

• We define two relations, AsnStm and AddStm, as inputs.

• Variable r is assigned the integer c

• Variable r is the result of x + y

• We define the LocalVar lattice, which is the output the analysis computes.

• Variable k has value v.

• LocalVar is a map lattice, where k is the key and v is the value.

• First rule: if we assign c to r, then we know the variable r has value c.

• Second rule: if we’re adding two variables and know their values, we can compute

the value of the result, using the sum function.

10

Constant Propagation

LocalVar(r, Cst(c)) :- AsnStm(r, c).

// input facts

AsnStm("x", 0).
AsnStm("x", 1).

// output facts

LocalVar("x", Cst(0)).
LocalVar("x", Cst(1)).

LocalVar("x", lub(Cst(0), Cst(1))).

11

LocalVar("x", Top).

• Here’s a small example of how Flix handles lattices.

• We’ll look at the first rule, and two input facts.

• Evaluating the rule, we infer that the local variable ”x” has value 0 and 1.

• But LocalVar is a lattice. We have two values for the same key.

• We have to compress the values, using the lub operation.

• This gives us Top.

• In the static analysis, we don’t know the exact value for “x”.

• So we approximate by saying the value is Top.

11

More Analyses in Flix

• Strong Update analysis

• [Lhoták and Chung, POPL ‘11]

• IFDS algorithm

• [Reps, Horwitz, and Sagiv, POPL ‘95]

• IDE algorithm

• [Sagiv, Reps, and Horwitz, TCS ‘96]

12

• Constant propagation is a bit of a “toy” analysis

• In the PLDI paper, we presented Flix implementations of three analyses

• I’m not too familiar with these analyses, and only have a very basic

understanding

• Strong Update analysis is a points-to analysis for C programs

• Propagates singleton sets flow-sensitively, larger sets flow-insensitively

• It’s possible to express in Datalog, but it uses a constant propagation

lattice, so Datalog performance isn’t as good as Flix

• IFDS: Interprocedural Finite Distributive Subset

• Framework for a specific class of problems

• Transforms a dataflow problem into a graph reachability problem

• Instantiate framework with a specific analysis by providing transfer

functions

• Can’t implement in Datalog, because of functions

• IDE: Interprocedural Distributive Environment

• Generalization of IFDS

12

IFDS

13

IDE

• The IFDS and IDE papers present the algorithm in pseudocode

• 1 page for IFDS, 2 pages for IDE

• This is very difficult to understand

• Even more difficult to implement

• It’s also not clear that IDE is an extension of IFDS

13

IFDS in Flix
PathEdge(d1, m, d3) :-

CFG(n, m),
PathEdge(d1, n, d2),
d3 <- eshIntra(n, d2).

PathEdge(d1, m, d3) :-
CFG(n, m),
PathEdge(d1, n, d2),
SummaryEdge(n, d2, d3).

PathEdge(d3, start, d3) :-
PathEdge(d1, call, d2),
CallGraph(call, target),
EshCallStart(call, d2, target, d3),
StartNode(target, start).

SummaryEdge(call, d4, d5) :-
CallGraph(call, target),
StartNode(target, start),
EndNode(target, end),
EshCallStart(call, d4, target, d1),
PathEdge(d1, end, d2),
d5 <- eshEndReturn(target, d2, call).

EshCallStart(call, d, target, d2) :-
PathEdge(_, call, d),
CallGraph(call, target),
d2 <- eshCallStart(call, d, target).

Result(n, d2) :-
PathEdge(_, n, d2).

JumpFn(d1, m, d3, comp(long, short)) :-
CFG(n, m),
JumpFn(d1, n, d2, long),
(d3, short) <- eshIntra(n, d2).

JumpFn(d1, m, d3, comp(caller, summary)) :-
CFG(n, m),
JumpFn(d1, n, d2, caller),
SummaryFn(n, d2, d3, summary).

JumpFn(d3, start, d3, identity()) :-
JumpFn(d1, call, d2, _),
CallGraph(call, target),
EshCallStart(call, d2, target, d3, _),
StartNode(target, start).

SummaryFn(call, d4, d5, comp(comp(cs, se), er)) :-
CallGraph(call, target),
StartNode(target, start),
EndNode(target, end),
EshCallStart(call, d4, target, d1, cs),
JumpFn(d1, end, d2, se),
(d5, er) <- eshEndReturn(target, d2, call).

EshCallStart(call, d, target, d2, cs) :-
JumpFn(_, call, d, _),
CallGraph(call, target),
(d2, cs) <- eshCallStart(call, d, target).

InProc(p, start) :- StartNode(p, start).
InProc(p, m) :- InProc(p, n), CFG(n, m).

Result(n, d, apply(fn, vp)) :-
ResultProc(proc, dp, vp),
InProc(proc, n),
JumpFn(dp, n, d, fn).

ResultProc(proc, dp, apply(cs, v)) :-
Result(call, d, v),
EshCallStart(call, d, proc, dp, cs).

14

IDE in Flix

• With Flix, you can implement the algorithms declaratively and much more

succinctly

• If you trust these implementations and squint a little, you can see the similarity

• E.g. PathEdge corresponds to JumpFn

• Next slide begins implementation

14

Back-end Architecture

15

Solver

Bytecode OR Interpreter

Abstract
Syntax
Tree

Codegen

Transformations

• 10:00 (23:00 total) to get here.

• After several phases, the front-end produces a TypedAst.

• The TypedAst goes through several transformations, becoming a SimplifiedAst and

then an ExecutableAst.

• Compiles higher-level constructs like pattern matching into lower-level

primitives.

• We’ll discuss pattern matching and lambda functions.

• Execution starts in the solver, which evaluates rules of the logic language.

• During this process, the solver may need to evaluate functional code.

• i.e. lattice operation (lub), or an explicit function call (sum)

• After evaluating the function, the result is returned to the solver.

• Two implementations of the functional language:

• Interpreter was original, and is for debugging and prototyping.

• JVM bytecode generator is newer, and for performance.

• This presentation will cover the code generator.

15

Lambda Functions

• Functions are first-class

• Can be nested, stored in variables, passed as arguments,
returned from functions…

• No nested methods in bytecode

• Target of a call must be a method reference

• Need a closure conversion pass

16

• In Flix, functions are first-class.

• You can nest function definitions, store a function in a variable, pass it as an

argument, and return from a function.

• This does not hold for bytecode.

• All methods must be defined at the top-level. No nesting.

• The target of a method call must be a method reference.

• Cannot be an arbitrary expression that evaluates to a function.

• To solve this, we have a closure conversion pass

16

Implementing Closures…?

// Scala
val a = 10
val f = (x: Int, y: Int) => a + x + y
f(1, 2) // 13

// Compiled Scala
class anon$fun(a$0: Int) extends Function2 {
def apply(x: Int, y: Int) = a$0 + x + y

}
val a = 10
val f = new anon$fun(a)
f.apply(1, 2) // 13

17

• 10:00 (33:00 total) to get here.

• So, how do you actually implement closures in bytecode?

• In object-oriented languages, one way to implement closures is to use function

objects.

• C++, C#, and Scala 2.11 use this method.

• Every lambda function has an associated anonymous class.

• The class stores captured variables, and defines a method that implements

the lambda function.

• Creating a closure instantiates that class, with values of captured variables.

• Here, a is passed to the constructor.

• Calling a closure is an interface call on the method.

• Problem with this approach: must generate an anonymous class for each lambda

function. Increases code size.

17

Using invokedynamic

• Flix uses the same strategy as Java 8 and Scala 2.12

• Create closure object with invokedynamic

• invokedynamic represents a dynamic call site

• Initially, target method is unknown

• invokedynamic calls bootstrap method to link target

• Subsequent calls skip bootstrap and directly call target

18

• An alternate approach, used by Java 8 and Scala 2.12, is invokedynamic.

• Instead of the code generator statically creating the classes, invokedynamic

will dynamically create the classes.

• Initially, the invokedynamic instruction is a dynamic call site, and the target of the

call is unknown

• To determine the target, invokedynamic calls a bootstrap method, and then

links it

• Subsequent calls bypass the bootstrap and directly call the target

• In other words, let the run time determine which method is called, but

then permanently link it so future calls are “static”

• Compared to existing methods, invokedynamic relaxes method calls – you

don’t need to provide the exact signature

• invokestatic – static method calls

• invokespecial – constructors, private methods, super calls

• Methods are known statically and cannot be overridden

• invokevirtual – invoking method on a known object, vtable entry known statically,

but not the target

• invokeinterface – invoking a method on an interface, vtable entry determined at

runtime

18

Implementing Closures

• Closure creation

• invokedynamic call to Java’s LambdaMetafactory

• Static arguments: functional interface, method handle

• Dynamic arguments: captured values

• Closure call

• Emit an interface call

19

• To create a closure, code generator emits an invokedynamic call to

LambdaMetafactory, which is defined in the Java standard library.

• Static arguments represent the functional interface implemented by the

closure, and a handle to the method implementing the function.

• Dynamic arguments represent the captured values.

• When a closure is created for the first time, invokedynamic calls the metafactory,

which generates an anonymous class.

• The class is instantiated with the captured values.

• Subsequent calls bypass the metafactory and directly instantiate the class.

• Closure call

• Emit an interface call.

• The closure will automatically supply the captured values to the

implementing function.

19

Generating Functional Interfaces

• A closure object implements a functional interface

• Interface is provided by the implementation

• Flix generates its own functional interfaces

• Before code generation, traverse AST to collect type
signatures of closures

• Generate the interfaces

20

• Each closure object needs to implement a functional interface.

• Functional interface: interface with a single abstract method.

• The interfaces must be provided by the implementation.

• Java provides a very small selection.

• If you’re writing lambdas in Java and can’t find the interface you

need, you have to define your own.

• Scala is the opposite extreme.

• Very general interfaces, all generic

• Flix generates its own functional interfaces.

• Traverse the AST, find every lambda function, and generate an interface for

each unique type.

• Generates only the interfaces that are needed.

• Interfaces are specialized, so no generics and no boxing/unboxing.

20

Evaluation – nbody

21

• 15:00 (38:00 total) to get here.

• Nbody from Computer Language Benchmarks Game

• Both Flix implementations are the slowest.

• But compiled Flix is 17x faster than interpreted Flix.

• nbody is the most complicated functional program implemented in Flix, and

highlights many inefficiencies.

• No tail call optimization, so the stack memory usage increases until the

stack overflows.

• Interpreter needs to copy the environment for each call, which becomes

expensive.

• C++ is the fastest

• Compiler can emit vector instructions.

21

Evaluation – strongupdate

22

• DLV is the Datalog implementation, running on the DLV solver

• C++ is from the original Strong Update paper

• Uses SPEC integer benchmarks as inputs

• Differences are consistent.

• Datalog slower than interpreted Flix, slower than compiled Flix, slower than

C++.

• The analysis requires a constant propagation lattice.

• In Datalog, the lattice is simulated as a power set lattice, which is much

more expensive.

• In Flix, the lattice can be expressed directly.

• So interpreted Flix is 3.7x faster than Datalog.

• Compiled Flix is 1.7x faster than the interpreter.

• C++ is even faster, at 126x.

• Flix is a general framework implemented in Scala, so already at a

disadvantage compared to C++.

• The C++ implementation also has a specific optimization to reduce memory

usage.

• Some elements of the lattice occur much more frequently.

• The C++ analyzer uses a special data structure that can implicitly

22

represent these elements.

• But Flix must explicitly represent them.

• Compile logic language to JVM bytecode

22

• If you want to use Flix today or get more information, you can check out our

website

• Paper is linked there, and also some presentation slides

23

• We’re open-source and on GitHub

• All you need is JDK 1.8

• You can download Flix right now and try it out

24

25

→ java -jar flix.jar --verifier Sign.flix
-- VERIFIER ERROR ------------------------------------ Sign.flix

>> The function is not monotone.

Counter-example: x1$1402 -> Zer, x2$1406 -> Neg, y1$1404 -> Pos,
y2$1408 -> Pos

The function was defined here:
238| def or(e1: Sign, e2: Sign): Sign = match (e1, e2) with {

^^

• Verifier to check correctness of your Flix program

• Lattices need to actually be lattices with finite height (actually, ascending

chain condition)

• Functions need to be strict and monotone

• Otherwise, Flix may not terminate, or worse, produce incorrect results

• Use symbolic execution to ensure properties hold

25

→ java -jar flix.jar --delta out.flix delta-debugging.flix
Caught `ca.uwaterloo.flix.api.RuleException' with message:

`The integrity rule defined at delta-debugging.flix:45:5 is violated.’
Delta Debugging Started. Trying to minimize 30 facts.

--- iteration: 1, current facts: 30, block size: 15 ---
[block 1] 15 fact(s) retained (program ran successfully).
[block 2] 15 fact(s) discarded.

--- Progress: 15 out of 30 facts (50.0%) ---

--- iteration: 2, current facts: 15, block size: 7 ---
[block 1] 7 fact(s) retained (program ran successfully).
[block 2] 7 fact(s) retained (program ran successfully).
[block 3] 1 fact(s) discarded.

--- Progress: 14 out of 30 facts (46.7%) ---

--- iteration: 3, current facts: 14, block size: 3 ---
[block 1] 3 fact(s) retained (program ran successfully).
[block 2] 3 fact(s) retained (program ran successfully).
[block 3] 2 fact(s) discarded.
[block 4] 3 fact(s) discarded.
[block 5] 3 fact(s) retained (program ran successfully).

--- Progress: 9 out of 30 facts (30.0%) ---

--- iteration: 4, current facts: 9, block size: 1 ---
[block 1] 1 fact(s) retained (program ran successfully).
[block 2] 1 fact(s) discarded.
[block 3] 1 fact(s) discarded.
[block 4] 1 fact(s) retained (program ran successfully).
[block 5] 1 fact(s) discarded.
[block 6] 1 fact(s) discarded.
[block 7] 1 fact(s) retained (program ran successfully).
[block 8] 1 fact(s) discarded.
[block 9] 1 fact(s) discarded.

--- Progress: 3 out of 30 facts (10.0%) ---

>>> Delta Debugging Complete! <<<
>>> Output written to `out.flix'. <<<

• Flix has a delta debugging tool

• Some large set of input facts causes an error

• Prune the set to create a smaller set of facts that still triggers the error

26

• There’s a visual debugger, which can help you pinpoint performance issues in your

Flix program

27

Summary

• Flix is a declarative language for static analysis

• Inspired by Datalog, but supports lattices and functions

• Bytecode generator is first step for performance

• Much work remains to be done

• Implementation available: http://github.com/flix

• Documentation and more: http://flix.github.io

28

• 7:00 (45:00 total) to get here.

• To summarize:

• This thesis concerned the implementation of the Flix functional language.

• First the interpreter, then the code generator, and also common AST

transformations.

• Evaluation finds that the compiled code is faster than the interpreted code.

• Especially for benchmarks that spend most of the time in functional code

• In some cases, Flix is comparable to Java and Scala.

• However, Flix is still slower than a handwritten C++ static analyzer.

• The bytecode generator is only the first step for performance.

• There is much work remaining.

28

