Flix: A Language for Static Analysis

Magnus Madsen, Ming-Ho Yee, Ondfej Lhotak

» Before coming to Northeastern, was a master’s student at Waterloo
* Worked on Flix as part of my master’s thesis project
* The Flix project is much larger than that
* Joint work with Ondrej Lhotak and Magnus Madsen
* We've also had undergraduates who have worked on Flix
* My focus has been the functional language back-end
* But today I'll also talk more generally about Flix the language



Datalog

* A declarative programming language
* Syntactic subset of Prolog, but different semantics

* Every Datalog program terminates with a unique
solution

* [Ceri, Gottlob, and Tanca, TKDE 1989]

* Datalog has been used for points-to analyses
* Separates specification from implementation
¢ [Bravenboer and Smaragdakis, OOPSLA ‘09]

 Static analyses are usually very complicated and difficult to implement
* One approach to implementing static analyses is to use Datalog.

Datalog is a declarative language: what not how.

Syntactic subset of Prolog, but different semantics (declarative vs
operational)

Specify the constraints of the analysis, and a Datalog solver finds the
solution.

Much easier to understand and maintain than using Java or C++

Every Datalog program terminates with a unique solution (unlike Prolog)
Good intro: “What you always wanted to know about Datalog And Never
Dared to Ask”

* Many researchers have used Datalog to implement pointer analyses

E.g. Doop framework by Bravenboer and Smaragdakis



Example: Transitive Closure

Path(x, y)
Path(x, z)
-

- Edge(x, vy).
- Path(x, y), Edge(y, z).

Head Body

Edge(1, 2).
Edge(2, 3).
Edge(3, 4).

Common example Datalog program
* Computes the transitive closure (i.e. reachability) of a graph.
Path and Edge are relations
* Edge relation is input, we start with known inputs
¢ Path relation is output, we want to compute the paths
In a Datalog program, we use rules to infer new facts.
If the body of a rule is true, then the head must also be true.
* “If Edge(x, y) holds, then so must Path(x, y)”
e “If Path(x, y) and Edge(y, z) hold, then so must Path(x, z)”
This is a very elegant way of expression the problem (and notice the recursion in the second rule)



Limitations of Datalog

* No user-defined lattices
* No functions
* Poor interoperability

* But Datalog has some limitations:
* No user-defined lattices (you have the powerset lattice)
* No functions
* Poor interoperability
* Some analyses cannot be expressed in Datalog.
* It’s possible to work around some of these limitations, but performance
suffers
* And the workarounds fail if the domain is infinite
* Using Datalog with existing tools and front-ends is difficult.
* Typically extract input facts from program under analysis, and save as text
file
» Datalog communicates with other tools through a textual interface



A Language for Static Analysis

* Flix extends Datalog with lattices and functions
* Logic language
* Functional language
¢ [Madsen, Yee, and Lhotdk, PLDI '16]

* Flix is implemented on the JVM

Flix extends Datalog with user-defined lattices and monotone functions.
» Specify analysis constraints in the logic language.
* Based on Datalog and supports user-defined lattices.
* Express user-defined functions in the functional language.
* Pure and strict, supports let-bindings, first-class functions, pattern
matching.
* Supports the Java integer types, including Biginteger. Also supports
tags and tuples.
Flix is implemented on the JVM (in Scala).
* Interoperability with JVM languages.
* Call Flix from a JVM language, call JVM code from Flix.



The Anatomy of a Datalog Rule

Terms: Variables or Constants

Head
() < B@,... B®).,
Bady
Predicates

* Let’s look at how Flix differs from Datalog
* Here’s what a Datalog rule looks like, but with math syntax
* The right-hand side is the body.
* If the body is satisfied, then the left-hand side, the head, must also be
satisfied.
* The head and body are composed of atoms.
* Each atom is a predicate symbol with variable or constant terms.



The Anatomy of a Flix Rule

H,(E (D) € ¢(0),B,®D, ..., B,(®).

* Flix rules are based on Datalog rules.
* We still have a head and a body.
* But each predicate symbol is associated with a lattice.
* The body may contain a list of filter functions.
» If the body is satisfied and the filter functions evaluate to true, then
the head must be satisfied
* The head atom may contain transfer functions.
* These functions map lattice elements to lattice elements.
* Note: filter and transfer functions must be monotone and lattices must have finite
height to guarantee termination



(1
Constant Propagation O((‘))O
)

enum Constant {
case Top, case Cst(Int), case Bot

}

def leq(el: Constant, e2: Constant): Bool =
match (el, e2) with {

case (Bot, _) => true
case (Cst(nl), Cst(n2)) => nl == n2
case (_, Top) => true
case _ => false

}

def lub(el: Constant, e2: Constant): Constant
def glb(el: Constant, e2: Constant): Constant

13:00 to get here.
Here is what constant propagation looks like in Flix.
* Some details are omitted for brevity.
First, look at the functional code.
We define a tagged union, Constant.
* Represents elements of the constant propagation lattice.
We define the three lattice operations:
* leq, lub, glb
* leqis an example of pattern matching.



def sum(el: Constant, e2: Constant): Constant
match (el, e2) with {

case (_, Bot) => Bot
case (Bot, _) => Bot
case (Cst(nl), Cst(n2)) => Cst(nl + n2)
case _ => Top
}

(1
Constant Propagation O((Q))O
)

* sum is a monotone transfer function
* Adding anything to Bot is Bot
* Adding two constants creates a new constant
* Everything else is Top




(1
Constant Propagation O(‘Q))O
)

// analysis inputs
rel AsnStm(r: Str, c: Int) // r
rel AddStm(r: Str, x: Str, y: Str) // r

C
X +Yy

// analysis outputs
lat Localvar(k: Str, v: Constant)

// rules
Localvar(r, Cst(c)) :- AsnStm(r, c).

Localvar(r, sum(vl, v2)) :- AddStm(r, x, vy),
Localvar(x, vi),
Localvar(y, v2).

Now for the logic code.
We define two relations, AsnStm and AddStm, as inputs.
* Variable ris assigned the integer c
* Variableris the result of x +y
We define the LocalVar lattice, which is the output the analysis computes.
* Variable k has value v.
* LocalVaris a map lattice, where k is the key and v is the value.
First rule: if we assign c to r, then we know the variable r has value c.
Second rule: if we’re adding two variables and know their values, we can compute
the value of the result, using the sum function.
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(1
Constant Propagation O((Q))o
)

Localvar(r, Cst(c)) :- AsnStm(r, c).

// input facts
AsnStm("x", 0).
AsnStm("x", 1).

// output facts
et ()<
ESE l‘!'(":{", est(i,,.

Localvar("x", Top).

* Here’s a small example of how Flix handles lattices.
* We'll look at the first rule, and two input facts.
* Evaluating the rule, we infer that the local variable ”x” has value 0 and 1.
* But LocalVar is a lattice. We have two values for the same key.
* We have to compress the values, using the lub operation.
* This gives us Top.
* In the static analysis, we don’t know the exact value for “x”.
* So we approximate by saying the value is Top.

11



More Analyses in Flix

* Strong Update analysis
* [Lhoték and Chung, POPL ‘11]

* |[FDS algorithm
* [Reps, Horwitz, and Sagiv, POPL ‘95]

* IDE algorithm
* [Sagiv, Reps, and Horwitz, TCS ‘96]

Constant propagation is a bit of a “toy” analysis
In the PLDI paper, we presented Flix implementations of three analyses
* I'm not too familiar with these analyses, and only have a very basic
understanding
Strong Update analysis is a points-to analysis for C programs
* Propagates singleton sets flow-sensitively, larger sets flow-insensitively
* It’s possible to express in Datalog, but it uses a constant propagation
lattice, so Datalog performance isn’t as good as Flix
IFDS: Interprocedural Finite Distributive Subset
* Framework for a specific class of problems
* Transforms a dataflow problem into a graph reachability problem
* Instantiate framework with a specific analysis by providing transfer
functions
* Can’timplement in Datalog, because of functions
IDE: Interprocedural Distributive Environment
* Generalization of IFDS

12
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e The IFDS and IDE papers present the algorithm in pseudocode
1 page for IFDS, 2 pages for IDE

* This is very difficult to understand

Even more difficult to implement

It’s also not clear that IDE is an extension of IFDS
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IFDS in Flix IDE in Flix

pathEdge(dl, m, d3) :- JumpFn(d1, m, d3, comp(long, short)) :-

CFG(n, m), CFG(n, m),

PathEdge(dl, n, d2), JumpFn(d1, n, d2, long),

d3 <- eshIntra(n, d2). (d3, short) <- eshIntra(n, d2).
PathEdge(dl, m, d3) :- JumpFn(d1, m, d3, comp(caller, summary)) :-

CFG(n, m), CFG(n, m),

PathEdge(dl, n, d2), JumpFn(d1, n, d2, caller),

SummaryEdge(n, d2, d3). SummaryFn(n, d2, d3, summary).
PathEdge(d3, start, d3) :- JumpFn(d3, start, d3, identity()) :-

PathEdge(dl, call, d2), JumpFn(d1, call, d2, _),

CallGraph(call, target), callGraph(call, target),

EshCallStart(call, d2, target, d3), EshCallstart(call, d2, target, d3, _),

StartNode(target, start). StartNode(target, start).
summaryEdge(call, d4, d5) :- SummaryFn(call, d4, d5, comp(comp(cs, se), er)) :-

callGraph(call, target), callGraph(call, target),

StartNode(target, start), StartNode(target, start),

EndNode(target, end), EndNode (target, end),

EshCallStart(call, d4, target, di), EshCallStart(call, d4, target, di, cs),

PathEdge(d1, end, d2), JumpFn(dl, end, d2, se),

d5 <- eshEndReturn(target, d2, call). (ds, er) <- eshEndReturn(target, d2, call).
EshCallStart(call, d, target, d2) :- EshCallStart(call, d, target, d2, cs) :-

PathEdge(_, call, d), JumpFn(_, call, d, _),

CallGraph(call, target), CallGraph(call, target),

d2 <- eshCallStart(call, d, target). (d2, cs) <- eshCallStart(call, d, target).
Result(n, d2) :- InProc(p, start) :- StartNode(p, start).

PathEdge(_, n, d2). InProc(p, m) :- InProc(p, n), CFG(n, m).

Result(n, d, apply(fn, vp)) :-
ResultProc(proc, dp, vp),
InProc(proc, n),
JumpFn(dp, n, d, fn).

ResultProc(proc, dp, apply(cs, v)) :-
Result(call, d, v),
EshCallstart(call, d, proc, dp, cs).

With Flix, you can implement the algorithms declaratively and much more

succinctly

If you trust these implementations and squint a little, you can see the similarity
* E.g. PathEdge corresponds to JumpFn

Next slide begins implementation



Back-end Architecture

Solver

| |
| |
| |
\Codeéen % Bytecode OR | Interpreter

Transformations

l

Abstract
Syntax
Tree

10:00 (23:00 total) to get here.
After several phases, the front-end produces a TypedAst.
The TypedAst goes through several transformations, becoming a SimplifiedAst and
then an ExecutableAst.
* Compiles higher-level constructs like pattern matching into lower-level
primitives.
* WEe’'ll discuss pattern matching and lambda functions.
Execution starts in the solver, which evaluates rules of the logic language.
* During this process, the solver may need to evaluate functional code.
* i.e. lattice operation (lub), or an explicit function call (sum)
» After evaluating the function, the result is returned to the solver.
Two implementations of the functional language:
* Interpreter was original, and is for debugging and prototyping.
* JVM bytecode generator is newer, and for performance.
This presentation will cover the code generator.
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Lambda Functions

e Functions are first-class

* Can be nested, stored in variables, passed as arguments,
returned from functions...

* No nested methods in bytecode
* Target of a call must be a method reference

* Need a closure conversion pass

* In Flix, functions are first-class.

* You can nest function definitions, store a function in a variable, pass it as an

argument, and return from a function.

* This does not hold for bytecode.

* All methods must be defined at the top-level. No nesting.

* The target of a method call must be a method reference.

* Cannot be an arbitrary expression that evaluates to a function.

» To solve this, we have a closure conversion pass

16



Implementing Closures...?

// Scala

val a = 10

val f = (x: Int, y: Int) => a + X + Yy
f(1, 2) // 13

// Compiled Scala
class anon$fun(a$e: Int) extends Function2 {
def apply(x: Int, y: Int) = a$0 + x + y

}
val a = 10
val f = new anon$fun(a)

f.apply(1, 2) // 13

10:00 (33:00 total) to get here.
So, how do you actually implement closures in bytecode?
In object-oriented languages, one way to implement closures is to use function
objects.
* C++, C#, and Scala 2.11 use this method.
Every lambda function has an associated anonymous class.
* The class stores captured variables, and defines a method that implements
the lambda function.
Creating a closure instantiates that class, with values of captured variables.
* Here, a is passed to the constructor.
Calling a closure is an interface call on the method.
Problem with this approach: must generate an anonymous class for each lambda
function. Increases code size.

17



Using invokedynamic

* Flix uses the same strategy as Java 8 and Scala 2.12
* Create closure object with invokedynamic

* invokedynamic represents a dynamic call site
* Initially, target method is unknown
* invokedynamic calls bootstrap method to link target
* Subsequent calls skip bootstrap and directly call target

An alternate approach, used by Java 8 and Scala 2.12, is invokedynamic.
* Instead of the code generator statically creating the classes, invokedynamic
will dynamically create the classes.
Initially, the invokedynamic instruction is a dynamic call site, and the target of the
call is unknown
* To determine the target, invokedynamic calls a bootstrap method, and then
links it
* Subsequent calls bypass the bootstrap and directly call the target
* In other words, let the run time determine which method is called, but
then permanently link it so future calls are “static”
* Compared to existing methods, invokedynamic relaxes method calls — you
don’t need to provide the exact signature
invokestatic — static method calls
invokespecial — constructors, private methods, super calls
* Methods are known statically and cannot be overridden
invokevirtual — invoking method on a known object, vtable entry known statically,
but not the target
invokeinterface — invoking a method on an interface, vtable entry determined at
runtime

18



Implementing Closures

* Closure creation
* invokedynamic call to Java’s LambdaMetafactory
* Static arguments: functional interface, method handle
* Dynamic arguments: captured values

* Closure call
¢ Emit an interface call

To create a closure, code generator emits an invokedynamic call to
LambdaMetafactory, which is defined in the Java standard library.
 Static arguments represent the functional interface implemented by the
closure, and a handle to the method implementing the function.
* Dynamic arguments represent the captured values.
When a closure is created for the first time, invokedynamic calls the metafactory,
which generates an anonymous class.
* The class is instantiated with the captured values.
Subsequent calls bypass the metafactory and directly instantiate the class.
Closure call
* Emit an interface call.
* The closure will automatically supply the captured values to the
implementing function.

19



Generating Functional Interfaces

* A closure object implements a functional interface
* Interface is provided by the implementation

* Flix generates its own functional interfaces

* Before code generation, traverse AST to collect type
signatures of closures
* Generate the interfaces

* Each closure object needs to implement a functional interface.
* Functional interface: interface with a single abstract method.
* The interfaces must be provided by the implementation.
* Java provides a very small selection.
* If you're writing lambdas in Java and can’t find the interface you
need, you have to define your own.
* Scalais the opposite extreme.
* Very general interfaces, all generic
* Flix generates its own functional interfaces.
* Traverse the AST, find every lambda function, and generate an interface for
each unique type.
* Generates only the interfaces that are needed.
* Interfaces are specialized, so no generics and no boxing/unboxing.
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15:00 (38:00 total) to get here.
Nbody from Computer Language Benchmarks Game
Both Flix implementations are the slowest.
* But compiled Flix is 17x faster than interpreted Flix.
nbody is the most complicated functional program implemented in Flix, and
highlights many inefficiencies.
* No tail call optimization, so the stack memory usage increases until the
stack overflows.
* Interpreter needs to copy the environment for each call, which becomes
expensive.
C++ is the fastest
* Compiler can emit vector instructions.
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Evaluation — strongupdate
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DLV - Flix (compiled)
Flix (interpreted) — x C++

DLV is the Datalog implementation, running on the DLV solver
C++ is from the original Strong Update paper
Uses SPEC integer benchmarks as inputs
Differences are consistent.
* Datalog slower than interpreted Flix, slower than compiled Flix, slower than
C++.
The analysis requires a constant propagation lattice.
* In Datalog, the lattice is simulated as a power set lattice, which is much
more expensive.
* In Flix, the lattice can be expressed directly.
* Sointerpreted Flix is 3.7x faster than Datalog.
* Compiled Flix is 1.7x faster than the interpreter.
C++ is even faster, at 126x.
* Flix is a general framework implemented in Scala, so already at a
disadvantage compared to C++.
* The C++ implementation also has a specific optimization to reduce memory
usage.
* Some elements of the lattice occur much more frequently.
* The C++ analyzer uses a special data structure that can implicitly
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represent these elements.
* But Flix must explicitly represent them.
Compile logic language to JVM bytecode

22
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* If you want to use Flix today or get more information, you can check out our
website

* Paper is linked there, and also some presentation slides
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» java -jar flix.jar --verifier Sign.flix
-- VERIFIER ERROR Sign.flix

Counter-example: x1$1402 -> Zer, x2$1406 -> Neg, yl$1404 -> Pos,

y2$1408 -> Pos

The function was defined here:
238] def or(el: Sign, e2: Sign): Sign = match (el, e2) with {

» Verifier to check correctness of your Flix program
» Lattices need to actually be lattices with finite height (actually, ascending
chain condition)
* Functions need to be strict and monotone
* Otherwise, Flix may not terminate, or worse, produce incorrect results
* Use symbolic execution to ensure properties hold



lix.api.RuleExc
rule defined at de

facts: 30, block size:

Progress: 15 out of 3@ facts (50.0%) ---

iteration: 2, current facts: 15, block size:

Progress: 14 out of 30 facts (46.7%) ---

iteration: 3, current facts: 14, block size:

Progress: 9 out of 30 facts (30.0%) ---

iteration: 4, current facts: 9, block size:

Progress: 3 out of 30 facts (10.0%) ---

* Flix has a delta debugging tool
» Some large set of input facts causes an error
* Prune the set to create a smaller set of facts that still triggers the error
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* There’s a visual debugger, which can help you pinpoint performance issues in your
Flix program
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Summary

* Flix is a declarative language for static analysis
* Inspired by Datalog, but supports lattices and functions

* Bytecode generator is first step for performance
* Much work remains to be done

* Implementation available: http://github.com/flix

* Documentation and more: http://flix.github.io
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7:00 (45:00 total) to get here.

To summarize:
* This thesis concerned the implementation of the Flix functional language.
* First the interpreter, then the code generator, and also common AST

transformations.

Evaluation finds that the compiled code is faster than the interpreted code.
* Especially for benchmarks that spend most of the time in functional code
* In some cases, Flix is comparable to Java and Scala.
* However, Flix is still slower than a handwritten C++ static analyzer.

The bytecode generator is only the first step for performance.
* There is much work remaining.

28



