Flix: A Language for Static Analysis

Magnus Madsen, Ming-Ho Yee, Ondfej Lhotak

» Before coming to Northeastern, was a master’s student at Waterloo
* Worked on Flix as part of my master’s thesis project
* The Flix project is much larger than that
* Joint work with Ondrej Lhotak and Magnus Madsen
* We've also had undergraduates who have worked on Flix
* My focus has been the functional language back-end
* But today I'll also talk more generally about Flix the language

Datalog

* A declarative programming language
* Syntactic subset of Prolog, but different semantics

* Every Datalog program terminates with a unique
solution

* [Ceri, Gottlob, and Tanca, TKDE 1989]

* Datalog has been used for points-to analyses
* Separates specification from implementation
¢ [Bravenboer and Smaragdakis, OOPSLA ‘09]

 Static analyses are usually very complicated and difficult to implement
* One approach to implementing static analyses is to use Datalog.

Datalog is a declarative language: what not how.

Syntactic subset of Prolog, but different semantics (declarative vs
operational)

Specify the constraints of the analysis, and a Datalog solver finds the
solution.

Much easier to understand and maintain than using Java or C++

Every Datalog program terminates with a unique solution (unlike Prolog)
Good intro: “What you always wanted to know about Datalog And Never
Dared to Ask”

* Many researchers have used Datalog to implement pointer analyses

E.g. Doop framework by Bravenboer and Smaragdakis

Example: Transitive Closure

Path(x, y)
Path(x, z)
-

- Edge(x, vy).
- Path(x, y), Edge(y, z).

Head Body

Edge(1, 2).
Edge(2, 3).
Edge(3, 4).

Common example Datalog program
* Computes the transitive closure (i.e. reachability) of a graph.
Path and Edge are relations
* Edge relation is input, we start with known inputs
¢ Path relation is output, we want to compute the paths
In a Datalog program, we use rules to infer new facts.
If the body of a rule is true, then the head must also be true.
* “If Edge(x, y) holds, then so must Path(x, y)”
e “If Path(x, y) and Edge(y, z) hold, then so must Path(x, z)”
This is a very elegant way of expression the problem (and notice the recursion in the second rule)

Limitations of Datalog

* No user-defined lattices
* No functions
* Poor interoperability

* But Datalog has some limitations:
* No user-defined lattices (you have the powerset lattice)
* No functions
* Poor interoperability
* Some analyses cannot be expressed in Datalog.
* It’s possible to work around some of these limitations, but performance
suffers
* And the workarounds fail if the domain is infinite
* Using Datalog with existing tools and front-ends is difficult.
* Typically extract input facts from program under analysis, and save as text
file
» Datalog communicates with other tools through a textual interface

A Language for Static Analysis

* Flix extends Datalog with lattices and functions
* Logic language
* Functional language
¢ [Madsen, Yee, and Lhotdk, PLDI '16]

* Flix is implemented on the JVM

Flix extends Datalog with user-defined lattices and monotone functions.
» Specify analysis constraints in the logic language.
* Based on Datalog and supports user-defined lattices.
* Express user-defined functions in the functional language.
* Pure and strict, supports let-bindings, first-class functions, pattern
matching.
* Supports the Java integer types, including Biginteger. Also supports
tags and tuples.
Flix is implemented on the JVM (in Scala).
* Interoperability with JVM languages.
* Call Flix from a JVM language, call JVM code from Flix.

The Anatomy of a Datalog Rule

Terms: Variables or Constants

Head
() < B@,... B®).,
Bady
Predicates

* Let’s look at how Flix differs from Datalog
* Here’s what a Datalog rule looks like, but with math syntax
* The right-hand side is the body.
* If the body is satisfied, then the left-hand side, the head, must also be
satisfied.
* The head and body are composed of atoms.
* Each atom is a predicate symbol with variable or constant terms.

The Anatomy of a Flix Rule

H,(E (D) € ¢(0),B,®D, ..., B,(®).

* Flix rules are based on Datalog rules.
* We still have a head and a body.
* But each predicate symbol is associated with a lattice.
* The body may contain a list of filter functions.
» If the body is satisfied and the filter functions evaluate to true, then
the head must be satisfied
* The head atom may contain transfer functions.
* These functions map lattice elements to lattice elements.
* Note: filter and transfer functions must be monotone and lattices must have finite
height to guarantee termination

(1
Constant Propagation O((‘))O
)

enum Constant {
case Top, case Cst(Int), case Bot

}

def leq(el: Constant, e2: Constant): Bool =
match (el, e2) with {

case (Bot, _) => true
case (Cst(nl), Cst(n2)) => nl == n2
case (_, Top) => true
case _ => false

}

def lub(el: Constant, e2: Constant): Constant
def glb(el: Constant, e2: Constant): Constant

13:00 to get here.
Here is what constant propagation looks like in Flix.
* Some details are omitted for brevity.
First, look at the functional code.
We define a tagged union, Constant.
* Represents elements of the constant propagation lattice.
We define the three lattice operations:
* leq, lub, glb
* leqis an example of pattern matching.

def sum(el: Constant, e2: Constant): Constant
match (el, e2) with {

case (_, Bot) => Bot
case (Bot, _) => Bot
case (Cst(nl), Cst(n2)) => Cst(nl + n2)
case _ => Top
}

(1
Constant Propagation O((Q))O
)

* sum is a monotone transfer function
* Adding anything to Bot is Bot
* Adding two constants creates a new constant
* Everything else is Top

(1
Constant Propagation O(‘Q))O
)

// analysis inputs
rel AsnStm(r: Str, c: Int) // r
rel AddStm(r: Str, x: Str, y: Str) // r

C
X +Yy

// analysis outputs
lat Localvar(k: Str, v: Constant)

// rules
Localvar(r, Cst(c)) :- AsnStm(r, c).

Localvar(r, sum(vl, v2)) :- AddStm(r, x, vy),
Localvar(x, vi),
Localvar(y, v2).

Now for the logic code.
We define two relations, AsnStm and AddStm, as inputs.
* Variable ris assigned the integer c
* Variableris the result of x +y
We define the LocalVar lattice, which is the output the analysis computes.
* Variable k has value v.
* LocalVaris a map lattice, where k is the key and v is the value.
First rule: if we assign c to r, then we know the variable r has value c.
Second rule: if we’re adding two variables and know their values, we can compute
the value of the result, using the sum function.

10

(1
Constant Propagation O((Q))o
)

Localvar(r, Cst(c)) :- AsnStm(r, c).

// input facts
AsnStm("x", 0).
AsnStm("x", 1).

// output facts
et ()<
ESE l‘!'(":{", est(i,,.

Localvar("x", Top).

* Here’s a small example of how Flix handles lattices.
* We'll look at the first rule, and two input facts.
* Evaluating the rule, we infer that the local variable ”x” has value 0 and 1.
* But LocalVar is a lattice. We have two values for the same key.
* We have to compress the values, using the lub operation.
* This gives us Top.
* In the static analysis, we don’t know the exact value for “x”.
* So we approximate by saying the value is Top.

11

More Analyses in Flix

* Strong Update analysis
* [Lhoték and Chung, POPL ‘11]

* |[FDS algorithm
* [Reps, Horwitz, and Sagiv, POPL ‘95]

* IDE algorithm
* [Sagiv, Reps, and Horwitz, TCS ‘96]

Constant propagation is a bit of a “toy” analysis
In the PLDI paper, we presented Flix implementations of three analyses
* I'm not too familiar with these analyses, and only have a very basic
understanding
Strong Update analysis is a points-to analysis for C programs
* Propagates singleton sets flow-sensitively, larger sets flow-insensitively
* It’s possible to express in Datalog, but it uses a constant propagation
lattice, so Datalog performance isn’t as good as Flix
IFDS: Interprocedural Finite Distributive Subset
* Framework for a specific class of problems
* Transforms a dataflow problem into a graph reachability problem
* Instantiate framework with a specific analysis by providing transfer
functions
* Can’timplement in Datalog, because of functions
IDE: Interprocedural Distributive Environment
* Generalization of IFDS

12

S

a
N
o0 T ot s i i

| e il e
! oot) B Bl)} o e
B s

EFEEE EEEE

Er—

Fl
2

W

@

B

1 whie Ntz 27

B bt ot vemon an ot g e . 4 o NedeWorkList:
B e

fl caan e st el

4 o o € ot 4 el e e o

[ok s = AengA((.) .0) T o
o dont
wl i sl odes

I o) € s

el . Bl 8 g)

procduc . ha o nck o cal o stat e 8

Tor meh o £ = gl)= (1.4) # AT do

W v) m i) el) 0
eod

procedure PropagaVale(nh, 1)

watoh)

(W g then

e

B i e

Bl o s 13

e The IFDS and IDE papers present the algorithm in pseudocode
1 page for IFDS, 2 pages for IDE

* This is very difficult to understand

Even more difficult to implement

It’s also not clear that IDE is an extension of IFDS

13

IFDS in Flix IDE in Flix

pathEdge(dl, m, d3) :- JumpFn(d1, m, d3, comp(long, short)) :-

CFG(n, m), CFG(n, m),

PathEdge(dl, n, d2), JumpFn(d1, n, d2, long),

d3 <- eshIntra(n, d2). (d3, short) <- eshIntra(n, d2).
PathEdge(dl, m, d3) :- JumpFn(d1, m, d3, comp(caller, summary)) :-

CFG(n, m), CFG(n, m),

PathEdge(dl, n, d2), JumpFn(d1, n, d2, caller),

SummaryEdge(n, d2, d3). SummaryFn(n, d2, d3, summary).
PathEdge(d3, start, d3) :- JumpFn(d3, start, d3, identity()) :-

PathEdge(dl, call, d2), JumpFn(d1, call, d2, _),

CallGraph(call, target), callGraph(call, target),

EshCallStart(call, d2, target, d3), EshCallstart(call, d2, target, d3, _),

StartNode(target, start). StartNode(target, start).
summaryEdge(call, d4, d5) :- SummaryFn(call, d4, d5, comp(comp(cs, se), er)) :-

callGraph(call, target), callGraph(call, target),

StartNode(target, start), StartNode(target, start),

EndNode(target, end), EndNode (target, end),

EshCallStart(call, d4, target, di), EshCallStart(call, d4, target, di, cs),

PathEdge(d1, end, d2), JumpFn(dl, end, d2, se),

d5 <- eshEndReturn(target, d2, call). (ds, er) <- eshEndReturn(target, d2, call).
EshCallStart(call, d, target, d2) :- EshCallStart(call, d, target, d2, cs) :-

PathEdge(_, call, d), JumpFn(_, call, d, _),

CallGraph(call, target), CallGraph(call, target),

d2 <- eshCallStart(call, d, target). (d2, cs) <- eshCallStart(call, d, target).
Result(n, d2) :- InProc(p, start) :- StartNode(p, start).

PathEdge(_, n, d2). InProc(p, m) :- InProc(p, n), CFG(n, m).

Result(n, d, apply(fn, vp)) :-
ResultProc(proc, dp, vp),
InProc(proc, n),
JumpFn(dp, n, d, fn).

ResultProc(proc, dp, apply(cs, v)) :-
Result(call, d, v),
EshCallstart(call, d, proc, dp, cs).

With Flix, you can implement the algorithms declaratively and much more

succinctly

If you trust these implementations and squint a little, you can see the similarity
* E.g. PathEdge corresponds to JumpFn

Next slide begins implementation

Back-end Architecture

Solver

| |
| |
| |
\Codeéen % Bytecode OR | Interpreter

Transformations

l

Abstract
Syntax
Tree

10:00 (23:00 total) to get here.
After several phases, the front-end produces a TypedAst.
The TypedAst goes through several transformations, becoming a SimplifiedAst and
then an ExecutableAst.
* Compiles higher-level constructs like pattern matching into lower-level
primitives.
* WEe’'ll discuss pattern matching and lambda functions.
Execution starts in the solver, which evaluates rules of the logic language.
* During this process, the solver may need to evaluate functional code.
* i.e. lattice operation (lub), or an explicit function call (sum)
» After evaluating the function, the result is returned to the solver.
Two implementations of the functional language:
* Interpreter was original, and is for debugging and prototyping.
* JVM bytecode generator is newer, and for performance.
This presentation will cover the code generator.

15

Lambda Functions

e Functions are first-class

* Can be nested, stored in variables, passed as arguments,
returned from functions...

* No nested methods in bytecode
* Target of a call must be a method reference

* Need a closure conversion pass

* In Flix, functions are first-class.

* You can nest function definitions, store a function in a variable, pass it as an

argument, and return from a function.

* This does not hold for bytecode.

* All methods must be defined at the top-level. No nesting.

* The target of a method call must be a method reference.

* Cannot be an arbitrary expression that evaluates to a function.

» To solve this, we have a closure conversion pass

16

Implementing Closures...?

// Scala

val a = 10

val f = (x: Int, y: Int) => a + X + Yy
f(1, 2) // 13

// Compiled Scala
class anon$fun(a$e: Int) extends Function2 {
def apply(x: Int, y: Int) = a$0 + x + y

}
val a = 10
val f = new anon$fun(a)

f.apply(1, 2) // 13

10:00 (33:00 total) to get here.
So, how do you actually implement closures in bytecode?
In object-oriented languages, one way to implement closures is to use function
objects.
* C++, C#, and Scala 2.11 use this method.
Every lambda function has an associated anonymous class.
* The class stores captured variables, and defines a method that implements
the lambda function.
Creating a closure instantiates that class, with values of captured variables.
* Here, a is passed to the constructor.
Calling a closure is an interface call on the method.
Problem with this approach: must generate an anonymous class for each lambda
function. Increases code size.

17

Using invokedynamic

* Flix uses the same strategy as Java 8 and Scala 2.12
* Create closure object with invokedynamic

* invokedynamic represents a dynamic call site
* Initially, target method is unknown
* invokedynamic calls bootstrap method to link target
* Subsequent calls skip bootstrap and directly call target

An alternate approach, used by Java 8 and Scala 2.12, is invokedynamic.
* Instead of the code generator statically creating the classes, invokedynamic
will dynamically create the classes.
Initially, the invokedynamic instruction is a dynamic call site, and the target of the
call is unknown
* To determine the target, invokedynamic calls a bootstrap method, and then
links it
* Subsequent calls bypass the bootstrap and directly call the target
* In other words, let the run time determine which method is called, but
then permanently link it so future calls are “static”
* Compared to existing methods, invokedynamic relaxes method calls — you
don’t need to provide the exact signature
invokestatic — static method calls
invokespecial — constructors, private methods, super calls
* Methods are known statically and cannot be overridden
invokevirtual — invoking method on a known object, vtable entry known statically,
but not the target
invokeinterface — invoking a method on an interface, vtable entry determined at
runtime

18

Implementing Closures

* Closure creation
* invokedynamic call to Java’s LambdaMetafactory
* Static arguments: functional interface, method handle
* Dynamic arguments: captured values

* Closure call
¢ Emit an interface call

To create a closure, code generator emits an invokedynamic call to
LambdaMetafactory, which is defined in the Java standard library.
 Static arguments represent the functional interface implemented by the
closure, and a handle to the method implementing the function.
* Dynamic arguments represent the captured values.
When a closure is created for the first time, invokedynamic calls the metafactory,
which generates an anonymous class.
* The class is instantiated with the captured values.
Subsequent calls bypass the metafactory and directly instantiate the class.
Closure call
* Emit an interface call.
* The closure will automatically supply the captured values to the
implementing function.

19

Generating Functional Interfaces

* A closure object implements a functional interface
* Interface is provided by the implementation

* Flix generates its own functional interfaces

* Before code generation, traverse AST to collect type
signatures of closures
* Generate the interfaces

* Each closure object needs to implement a functional interface.
* Functional interface: interface with a single abstract method.
* The interfaces must be provided by the implementation.
* Java provides a very small selection.
* If you're writing lambdas in Java and can’t find the interface you
need, you have to define your own.
* Scalais the opposite extreme.
* Very general interfaces, all generic
* Flix generates its own functional interfaces.
* Traverse the AST, find every lambda function, and generate an interface for
each unique type.
* Generates only the interfaces that are needed.
* Interfaces are specialized, so no generics and no boxing/unboxing.

nbody
1000
100 . . B
10 + - 1
= - '
g —
E 1 — - 1
= - N
0.1 - - Ruby —t
TF - Flix (interpreted) —— 7
Y Flix (compiled)
Scala
0.01 a7 Java, E
‘ Cbt
10 100 1000
m iterations (thousands)
21

15:00 (38:00 total) to get here.
Nbody from Computer Language Benchmarks Game
Both Flix implementations are the slowest.
* But compiled Flix is 17x faster than interpreted Flix.
nbody is the most complicated functional program implemented in Flix, and
highlights many inefficiencies.
* No tail call optimization, so the stack memory usage increases until the
stack overflows.
* Interpreter needs to copy the environment for each call, which becomes
expensive.
C++ is the fastest
* Compiler can emit vector instructions.

21

Evaluation — strongupdate

strongupdate
1000

100 ¢

10

Time (s)

Y»/ @, %, ‘9:6 Y@/ %, 70/6 B G W o 900/ %‘6,/ st;,/
Z “ ’ &, e, Y o Gy Oy YR SRR
Y Yo Y 9, %, S %, Ry e Yy T g T, Y,
0 Y, o % AN o G,
%, » SR

DLV - Flix (compiled)
Flix (interpreted) — x C++

DLV is the Datalog implementation, running on the DLV solver
C++ is from the original Strong Update paper
Uses SPEC integer benchmarks as inputs
Differences are consistent.
* Datalog slower than interpreted Flix, slower than compiled Flix, slower than
C++.
The analysis requires a constant propagation lattice.
* In Datalog, the lattice is simulated as a power set lattice, which is much
more expensive.
* In Flix, the lattice can be expressed directly.
* Sointerpreted Flix is 3.7x faster than Datalog.
* Compiled Flix is 1.7x faster than the interpreter.
C++ is even faster, at 126x.
* Flix is a general framework implemented in Scala, so already at a
disadvantage compared to C++.
* The C++ implementation also has a specific optimization to reduce memory
usage.
* Some elements of the lattice occur much more frequently.
* The C++ analyzer uses a special data structure that can implicitly

22

represent these elements.
* But Flix must explicitly represent them.
Compile logic language to JVM bytecode

22

B A | Tetzpanminl, *
&« i) flixgithubio

Documertation Download Getting Stated. Gittiug

Flix. Functional. Logical.

The elegance of functional programming with the ~ Get Started with Fiix
- - o Feguies the Ixda Autime Lrvrcrmeat 18
conciseness of fogic programming. :

Think 5QL but on steroids.

Duwiriluerd Czcumentaticn

lmcent bens

& annhnens Th first revive wers oo
uibmlprnmn anu sore o i3
sl e gaper e Jieta oo o e A Ueslarak ve L gaga T ped ot on Lotz

b s ST ety ey

* If you want to use Flix today or get more information, you can check out our
website

* Paper is linked there, and also some presentation slides

Fulirequests Issuss Gist

o ke G-
Tk { Tlix @ Urwatch- 7 & Unsiar ¥ Fark
£ iy Tpsen T o 1] 1l lings
The Filx Pragramming Langusge hitp:itio.grhut o — Edil
2z n U Yo 2 & caitntadiin

Cresse ey Uplaadhies Fing o

i READWE.md

The Flix Programming Language

Maaict o

ilary fo |

dee oof The Fix coerpiker ard noe-lime.

Reporting Bugs & Feature Requests

Yiou ane st vsoares (0 epor bugs o regues festures on fhis GilHub gage

e s

* We're open-source and on GitHub
* AllyouneedisJDK 1.8

* You can download Flix right now and try it out

» java -jar flix.jar --verifier Sign.flix
-- VERIFIER ERROR Sign.flix

Counter-example: x1$1402 -> Zer, x2$1406 -> Neg, yl$1404 -> Pos,

y2$1408 -> Pos

The function was defined here:
238] def or(el: Sign, e2: Sign): Sign = match (el, e2) with {

» Verifier to check correctness of your Flix program
» Lattices need to actually be lattices with finite height (actually, ascending
chain condition)
* Functions need to be strict and monotone
* Otherwise, Flix may not terminate, or worse, produce incorrect results
* Use symbolic execution to ensure properties hold

lix.api.RuleExc
rule defined at de

facts: 30, block size:

Progress: 15 out of 3@ facts (50.0%) ---

iteration: 2, current facts: 15, block size:

Progress: 14 out of 30 facts (46.7%) ---

iteration: 3, current facts: 14, block size:

Progress: 9 out of 30 facts (30.0%) ---

iteration: 4, current facts: 9, block size:

Progress: 3 out of 30 facts (10.0%) ---

* Flix has a delta debugging tool
» Some large set of input facts causes an error
* Prune the set to create a smaller set of facts that still triggers the error

i Modst - Ferlmies Comciers Treness O Running

Welcome to the Flix Debugger

Waorklist {2,130 items) Ralations
=i o
Sere e]
iy L=
e L=
16 L1525]
5
cud L1]
Catabaze (402 530 facts)
EEET) % @
i o
senat o
antn ad &
seattn
prid Huti pand
w0t
e Lattices
o o1
i L 7.1]
IMemory Usage (242 MB) 5 =
i

1

* There’s a visual debugger, which can help you pinpoint performance issues in your
Flix program

27

Summary

* Flix is a declarative language for static analysis
* Inspired by Datalog, but supports lattices and functions

* Bytecode generator is first step for performance
* Much work remains to be done

* Implementation available: http://github.com/flix

* Documentation and more: http://flix.github.io

28

7:00 (45:00 total) to get here.

To summarize:
* This thesis concerned the implementation of the Flix functional language.
* First the interpreter, then the code generator, and also common AST

transformations.

Evaluation finds that the compiled code is faster than the interpreted code.
* Especially for benchmarks that spend most of the time in functional code
* In some cases, Flix is comparable to Java and Scala.
* However, Flix is still slower than a handwritten C++ static analyzer.

The bytecode generator is only the first step for performance.
* There is much work remaining.

28

