Dimensions of Precision in Reference Analysis of
Object-Oriented Programming Languages
Dr. Barbara G. Ryder

Presented by: Ming-Ho Yee
September 23, 2016

* This was the keynote at CCin 2003
(http://people.cs.vt.edu/ryder/CCO3InvitedNew.pdf)
* It surveys the research, how it has evolved, and classifies some common
aspects (dimensions)
* Dr. Ryder is a Professor Emerita at Virginia Tech— she retired earlier this month




Introduction

* Object-oriented (OO0) languages have become mature and popular

* Call graphs are useful for OO program analysis
* But call graph construction is related to reference analysis

* Dimensions of a reference analysis affect precision and cost

The paper was written in 2003, and OO languages were (and still are) popular, and
there was a lot of active research
* Java was first released in 1995
We’ve already seen that call graphs are useful for analyzing OO programs, e.g. to
inline methods, see if endOfWorld() is called
* We've also seen that pointer analysis and call graphs are related
* To construct a call graph, you need to know what receiver objects a
variable may point to
* And to determine what variables point to, you need to know the call graph
This paper examines reference analysis
* There is some set of objects, and a reference variable or field may point to
any of those objects
* The analysis goal is to determine information about that set
There different dimensions and aspects of an analysis
* We've also seen that there is a trade-off between precision and cost




Reference Analysis

“Determine information about the set of objects to which a reference
variable or field may point during program execution.”

* Applications
* Tools: compiler optimizations, test harnesses, refactoring
* Analyses: side-effect, escape, def-use

* Choosing the right cost/precision trade-off is very important

Reference analysis is a general class of analyses
» Reference variables may point to some set of objects
* Want to determine information about that set
Reference analysis is closely related to call graph construction
There are many important applications (tools and other analyses) that require
reference analysis
* Compiler optimizations, test harnesses, code refactoring
» Side-effect analysis, escape analysis, def-use analysis
Different analyses have different requirements in terms of cost and precision
* The task is to determine which tradeoffs are acceptable




Dimensions of Precision Analysis

* Flow sensitivity

* Context sensitivity

* Program representation
* Object representation

* Field sensitivity

* Reference representation
* Directionality

* The paper discusses 7 dimensions of varying precision analysis
* Each one will be discussed in more detail

* We've already seen some examples, especially in the first paper of this course
* Call graph construction algorithms (CHA, RTA, XTA)
* In general, more precise algorithms also have higher cost




Flow Sensitivity

An analysis is flow-sensitive if it accounts for the order of execution of
statements in a program. Otherwise, an analysis is flow-insensitive.

* Flow-sensitive analyses are more precise, but expensive

* Methods in OO programs are generally small
* Flow-sensitivity probably not that useful
* Context-sensitivity probably more useful

* An analysis is flow-sensitive if the order of execution of statements matters
e Otherwise it is flow-insensitive

 Clearly, this improves precision, but it’s also more expensive

* 00 methods are usually so
* So it seems like flow-sensitivity isn’t that useful
* Context sensitivity is probably more useful




Example: Flow Insensitive Analysis

A

> s = new A(); // o, Q
t = . s,t

3 = S,
< =

Example from Dr. Ryder’s presentation

6

s points to object ol

t points to whatever s points to (01)
s then points to 02

So t also points to 02

If the order mattered, the analysis would notice that s no longer points to o1
* Could jumble the statements around and still get the same result




Example: Flow Sensitive Analysis

1 A's, t; < Q
> s =new A(); // o,

3t = s;

2 s =new A(); // o, t Q

Example from Dr. Ryder’s presentation

7

s points to ol
t points to whatever s points to (01)
s = new A() is a kill assignment
* Previous points-to information is overwritten
* s no longer points to 0l because it points to 02

Order matters: s = new A() came last




Context Sensitivity

An analysis is context-sensitive if it distinguishes between different
calling contexts. Otherwise, an analysis is context-insensitive.

* Context-sensitive analyses are more precise, but expensive
* Call string vs functional approach

* An area of active research
* 00 method calls would probably benefit from context-sensitive analyses

An analysis is context-sensitive if it distinguishes between different calling contexts
* Otherwise, it is context-insensitive

Again, you get more precision but with higher cost

Two common approaches: call string and functional

There was a lot of research in this area
* Indicates there is interest in using context-sensitive analyses




Example: Context Sensitivity

class Y extends X {..}

s »— I —

X f;
void m(X q) \\ ,’

{ this.f = q; } \/

} this, , £
7\

/7 A\
/ \
2
v —Cp)— &

Example from Dr. Ryder’s presentation

A ax = new A(); //
ax.m(new X()); //
A ay = new A(); //
ay.m(new Y()); //

O O0O0O0
N [

ax points to ol

Call ax.m
* m’s this points to ol and parameter g points to 02
* Assign this.f =g, so ol points to 02

Now a similar sequence

ay points to 03

Call ay.m
e M’s this points to 03
* Assign this.f = g, so 03 points to 04

But a context-insensitive analysis can’t tell that m was called on ax or ay
* So this.f for both objects could point to 02 or 04




Program Representation (Calling Structure)

* Program calling structure is related to reference analysis solution

* Two approaches:
* Approximate call graph and then do the reference analysis
* Interleave reference analysis with call graph construction

* Lazy approach is preferred
* Only reachable methods are in the call graph
* Excluding unused methods improves cost and precision

As we’ve seen many times, building a call graph is related to a reference analysis
We could build the graph first, and then run the reference analysis
Or we could do both at the same time, constructing the call graph on-the-fly
* The call graph algorithms we saw in the first paper did this
* |t starts from main, explores reachable methods, adds them to call graph,
and continues building
Lazy approach is preferred (Gove, Chambers TOPLAS ‘01)
* Unreachable methods are ignored, which improves cost and precision
* Better for handling library methods

10



Example: Program Representation

class A { main
public void foo(B b)
{ b.bar(); }
A.foo() B.baz()
class B {

public void bar() {}
public void baz()
{ bar(); C.xyz(); } B.bar()

public static void main(..) {
A a = new A();
a.foo(new B()); C.xyz()

 If we build the call graph lazily, we see that main calls A.foo()
* And A.foo() calls B.bar()
* If we just tried building the call graph by looking at all the methods
* We would also see that B.baz() calls B.bar()
* And B.baz() calls C.xyz()
* C.xyz() could call a lot of other methods
* But all of this is irrelevant, since neither are reachable from main

11



Object Representation

* Two common approaches for elements in the analysis solution
* One abstract object for all instantiations of a class
* One abstract object for each creation site of a class

* There are also other, more precise approaches

* One abstract object per class might be OK for call graph construction
* May not be precise enough for other analyses

There are two common approaches for representing objects in the analysis
solution
* One abstract object per class, i.e. one abstract object for all instantiations
* One abstract object for each creation site
Already, we can see there will be a difference in precision and cost
There are also more precise approaches
One abstract object per class might be fine for call graph construction (and is what
was used in the first paper)
* But more sophisticated analyses may require more precision

12



Example: One Abstract Object Per Class

class A {
public B f;
public void foo() {} X,y,Z
class B {}
A x = new A(); // o, <:::::>
Ay =new A(); // o
Az =x; // 04
y.f = new B() // o,

X pointsto A
Y points to A
Z =xs0 zpointsto A
If we were constructing a call graph, this is OK
* It doesn’t matter that there’s only one A in the program
But if we want to know which objects point to B, this is imprecise
* X, Y,zmay all refer to some object A that refers to B

13



Example: One Abstract Object Per Creation Site

class A { Q
public B f; Xo2

public void foo() {}

}

class B {} y
A x = new A(); // o

Ay =new A(); // o,

Az = X; // 04

y.f = new B() // o,

X points to object Ax
Y points to object Ay
Assign z = x so z points to Ax
Update y’s field to point to B
* So Ay points to B, but not Ax

14



Field Sensitivity

An analysis is field-sensitive if its fields are distinctly represented in the
solution. Otherwise, an analysis is field insensitive.

* Not distinguishing fields may decrease precision and increase cost

* But the interaction with other dimensions of precision is not clear
* More evaluation is needed

An analysis is field-sensitive if it represents fields in an object distinctly. Otherwise
it is field-insensitive.
A study (co-authored by Dr. Ryder) found that a field-insensitive analysis decreases
precision (expected) but also increases cost

* So using field-sensitive analyses seems to be better
But the interaction with other dimensions of precision is not clear

* More evaluation is needed

15



Example: Field Insensitive Analysis

class A {
public B f1;

public C f2; f1,f2
} —
class B {}
class C { public D f; }
class D {} f

A x = new A(); // 04

x.fl = new B(); // o,

x.f2 = new C(); // 03

x.f2.f = new D(); // o,
X pointsto A

Field x.f1 points to a new object B
Field x.f2 points to a new object C
But since we are field insensitive, all we know is that A points to B and C
Now x.f1.f points to new object D
* i.e.object B should point to object D
* But we're field insensitive, so all we know is that B and C may point to D

16



Example: Field Sensitive Analysis

class A {

public B f1;

public C f2; f1
class B {} X c
class C { public D f; } 2
class D {}

.F

A x = new A(); // 04
x.fl = new B(); // o,
x.f2 = new C(); // 03
x.f2.f = new D(); // o,

X pointsto A
Field x.f1 points to a new object B
Field x.f2 points to a new object C
We're field sensitive, so A points to two separate objects B and C
Now x.f1.f points to new object D
* i.e.object B should point to object D

17



Reference Representation

* Generally, each reference has a unique representative

* Alternative approaches:
* One abstract reference per type
* One abstract reference per method

* Fewer references are less precise, but the analysis is more efficient

* Examples: CTA, FTA/MTA, XTA

In general, each reference (i.e. variable or field) has a unique representative
Other approaches are less precise, but improve performance

* One abstract reference per type

* One abstract reference per method
For examples, see the call graph algorithms from the first class (Tip and Palsberg,
OOPSLA ‘00)

* Note that the other algorithms with fewer references were often too

imprecise

18



Directionality

* How does the analysis interpret assignments (p = q)?

* Symmetric (unification constraints)

* p and g have the same information after the assignment

* E.g. Steensgaard’s pointer analysis (worst case almost linear time)
* Directional (inclusion constraints)

* Information flows from q to p

* E.g. Andersen’s pointer analysis (worst case cubic time)

* Inclusion more precise than unification, but slightly more cost

The final dimension is directionality
* Concerns pointer assighnment statements
The assignment can be symmetric or directional
Symmetric (expressed as unification constraints)
* Pointers p and q have the same information after the assignment
* Similar to Steensgaard’s analysis
Directional (expressed as inclusion constraints)
* Information flows from q to p
* Similar to Andersen’s pointer analysis
Inclusion constraints are generally more precise than unification
* But worst case cubic time vs worst case almost linear time
But in practice, inclusion constraints are practical and worth the extra cost

19



Example: Directionality

Unification Constraints Inclusion Constraints
— D — @
. —ED a—D
P=29q p=q
-—&ED
D
. —@D

20

Consider an analysis that has partially run
* P pointsto ol, q points to 02
Analysis sees the assignment p—q
Unification constraint will take the union of the two points-to sets
* So p and g may both point to o1 and 02
But the inclusion constraint is different
* Information from q flows to p, but g remains constant
* (’s points-to set is still 02
* But now p may point to ol or 02
* p’s set “includes” g’s set

20



Open Issues

* Reflection

* Native methods

* Exceptions

* Dynamic class loading
* Incomplete programs
* Benchmarks

* There are still open issues that analyses must address
* We've already seen some of these come up before

Reflection: create objects, call methods, access fields at runtime without
knowing types at compile time

Native methods: Java calls C code, analyzer needs to account for whatever
C could do

Exceptions: Affects the control flow of a program

Dynamic class loading: Basically eval is evil

Incomplete programs: If you don’t have access to the library to analyze
Benchmarks: Need good benchmarks for evaluating different analyses, to
validate them and better understand trade-offs

* Note that Averroes is one approach for handling incomplete programs

21



Conclusions

* Different dimensions affect the precision and cost of an analysis
* Challenge: picking the right analysis for a specific application, and making the
appropriate precision/cost trade-off
* Observations:

* 0O programs usually have many small methods, and method calls are primary
control flow structure

* Context sensitivity probably more useful than flow sensitivity
* Inclusion constraints more precise than unification, and still practical

* No single analysis works for all applications

We’ve seen how different dimensions can affect the precision and cost of an
analysis
The challenge is to pick the right analysis and trade-offs for a specific application
* What is the required precision? How much performance cost can you
handle?
There are some general observations
* 0O code seems to have many small methods
* Control flow is basically done by methods calling each other
* So context sensitivity seems more useful than flow sensitivity
* Inclusion constraints are more precise than unification constraints, and
worth the extra cost
The important point is that no single analysis works for all applications

22



Discussion

* Some of the approaches seem to be “obviously” better than others.
Are there cases where this might not be the case?

* Not all of the dimensions are binary. Could we use some hybrid

approach?
* E.g. part of an analysis is flow sensitive, the rest is flow insensitive

* What are other dimensions of precision in a reference analysis?

* This is a paper from 13 years ago, so programs and hardware have changed
* Will some approaches which were too expensive in 2003 be feasible in
20167
* Paper didn’t seem to find flow sensitivity to be very practical, but how
about now?
* Some of the dimensions presented are pretty binary, but others aren’t
* Does it make sense to take some hybrid approaches?
* E.g. part of an analysis is flow sensitive, another part is flow insensitive
* What would this look like?
* Are there any other dimensions of precision we could consider?

23



