
Dimensions of Precision in Reference Analysis of

Object-Oriented Programming Languages

Dr. Barbara G. Ryder

Presented by: Ming-Ho Yee

September 23, 2016

• This was the keynote at CC in 2003

(http://people.cs.vt.edu/ryder/CC03InvitedNew.pdf)

• It surveys the research, how it has evolved, and classifies some common

aspects (dimensions)

• Dr. Ryder is a Professor Emerita at Virginia Tech– she retired earlier this month

1

Introduction

• Object-oriented (OO) languages have become mature and popular

• Call graphs are useful for OO program analysis

• But call graph construction is related to reference analysis

• Dimensions of a reference analysis affect precision and cost

2

• The paper was written in 2003, and OO languages were (and still are) popular, and

there was a lot of active research

• Java was first released in 1995

• We’ve already seen that call graphs are useful for analyzing OO programs, e.g. to

inline methods, see if endOfWorld() is called

• We’ve also seen that pointer analysis and call graphs are related

• To construct a call graph, you need to know what receiver objects a

variable may point to

• And to determine what variables point to, you need to know the call graph

• This paper examines reference analysis

• There is some set of objects, and a reference variable or field may point to

any of those objects

• The analysis goal is to determine information about that set

• There different dimensions and aspects of an analysis

• We’ve also seen that there is a trade-off between precision and cost

2

Reference Analysis

“Determine information about the set of objects to which a reference

variable or field may point during program execution.”

• Applications
• Tools: compiler optimizations, test harnesses, refactoring

• Analyses: side-effect, escape, def-use

• Choosing the right cost/precision trade-off is very important

3

• Reference analysis is a general class of analyses

• Reference variables may point to some set of objects

• Want to determine information about that set

• Reference analysis is closely related to call graph construction

• There are many important applications (tools and other analyses) that require

reference analysis

• Compiler optimizations, test harnesses, code refactoring

• Side-effect analysis, escape analysis, def-use analysis

• Different analyses have different requirements in terms of cost and precision

• The task is to determine which tradeoffs are acceptable

3

Dimensions of Precision Analysis

• Flow sensitivity

• Context sensitivity

• Program representation

• Object representation

• Field sensitivity

• Reference representation

• Directionality

4

• The paper discusses 7 dimensions of varying precision analysis

• Each one will be discussed in more detail

• We’ve already seen some examples, especially in the first paper of this course

• Call graph construction algorithms (CHA, RTA, XTA)

• In general, more precise algorithms also have higher cost

4

Flow Sensitivity

An analysis is flow-sensitive if it accounts for the order of execution of

statements in a program. Otherwise, an analysis is flow-insensitive.

• Flow-sensitive analyses are more precise, but expensive

• Methods in OO programs are generally small
• Flow-sensitivity probably not that useful

• Context-sensitivity probably more useful

5

• An analysis is flow-sensitive if the order of execution of statements matters

• Otherwise it is flow-insensitive

• Clearly, this improves precision, but it’s also more expensive

• OO methods are usually so

• So it seems like flow-sensitivity isn’t that useful

• Context sensitivity is probably more useful

5

Example: Flow Insensitive Analysis

1 A s, t;

2 s = new A(); // o1
3 t = s;

4 s = new A(); // o2

Example from Dr. Ryder’s presentation

ss,t o1o1, o2

6

• s points to object o1

• t points to whatever s points to (o1)

• s then points to o2

• So t also points to o2

• If the order mattered, the analysis would notice that s no longer points to o1

• Could jumble the statements around and still get the same result

6

Example: Flow Sensitive Analysis

1 A s, t;

2 s = new A(); // o1
3 t = s;

4 s = new A(); // o2

Example from Dr. Ryder’s presentation

s o1

o1t

o2

7

• s points to o1

• t points to whatever s points to (o1)

• s = new A() is a kill assignment

• Previous points-to information is overwritten

• s no longer points to o1 because it points to o2

• Order matters: s = new A() came last

7

Context Sensitivity

An analysis is context-sensitive if it distinguishes between different

calling contexts. Otherwise, an analysis is context-insensitive.

• Context-sensitive analyses are more precise, but expensive

• Call string vs functional approach

• An area of active research
• OO method calls would probably benefit from context-sensitive analyses

8

• An analysis is context-sensitive if it distinguishes between different calling contexts

• Otherwise, it is context-insensitive

• Again, you get more precision but with higher cost

• Two common approaches: call string and functional

• There was a lot of research in this area

• Indicates there is interest in using context-sensitive analyses

8

Example: Context Sensitivity

class Y extends X {…}
class A {

X f;
void m(X q)
{ this.f = q; }

}

A ax = new A(); // o1
ax.m(new X()); // o2
A ay = new A(); // o3
ay.m(new Y()); // o4

Example from Dr. Ryder’s presentation

ax

ay

thisA.m q

o1.f

o3.f

o2

o4

9

• ax points to o1

• Call ax.m

• m’s this points to o1 and parameter q points to o2

• Assign this.f = q, so o1 points to o2

• Now a similar sequence

• ay points to o3

• Call ay.m

• M’s this points to o3

• Assign this.f = q, so o3 points to o4

• But a context-insensitive analysis can’t tell that m was called on ax or ay

• So this.f for both objects could point to o2 or o4

9

Program Representation (Calling Structure)

• Program calling structure is related to reference analysis solution

• Two approaches:

• Approximate call graph and then do the reference analysis

• Interleave reference analysis with call graph construction

• Lazy approach is preferred

• Only reachable methods are in the call graph

• Excluding unused methods improves cost and precision

10

• As we’ve seen many times, building a call graph is related to a reference analysis

• We could build the graph first, and then run the reference analysis

• Or we could do both at the same time, constructing the call graph on-the-fly

• The call graph algorithms we saw in the first paper did this

• It starts from main, explores reachable methods, adds them to call graph,

and continues building

• Lazy approach is preferred (Gove, Chambers TOPLAS ‘01)

• Unreachable methods are ignored, which improves cost and precision

• Better for handling library methods

10

Example: Program Representation

class A {
public void foo(B b)

{ b.bar(); }
}

class B {
public void bar() {}
public void baz()

{ bar(); C.xyz(); }

public static void main(…) {
A a = new A();
a.foo(new B());

}
11

main

A.foo()

B.bar()

B.baz()

C.xyz()

• If we build the call graph lazily, we see that main calls A.foo()

• And A.foo() calls B.bar()

• If we just tried building the call graph by looking at all the methods

• We would also see that B.baz() calls B.bar()

• And B.baz() calls C.xyz()

• C.xyz() could call a lot of other methods

• But all of this is irrelevant, since neither are reachable from main

11

Object Representation

• Two common approaches for elements in the analysis solution

• One abstract object for all instantiations of a class

• One abstract object for each creation site of a class

• There are also other, more precise approaches

• One abstract object per class might be OK for call graph construction

• May not be precise enough for other analyses

12

• There are two common approaches for representing objects in the analysis

solution

• One abstract object per class, i.e. one abstract object for all instantiations

• One abstract object for each creation site

• Already, we can see there will be a difference in precision and cost

• There are also more precise approaches

• One abstract object per class might be fine for call graph construction (and is what

was used in the first paper)

• But more sophisticated analyses may require more precision

12

Example: One Abstract Object Per Class

class A {
public B f;
public void foo() {}

}
class B {}

A x = new A(); // o1
A y = new A(); // o1
A z = x; // o1
y.f = new B() // o2

13

xx,yx,y,z o1.f

o2

• X points to A

• Y points to A

• Z = x so z points to A

• If we were constructing a call graph, this is OK

• It doesn’t matter that there’s only one A in the program

• But if we want to know which objects point to B, this is imprecise

• x, y, z may all refer to some object A that refers to B

13

Example: One Abstract Object Per Creation Site

class A {
public B f;
public void foo() {}

}
class B {}

A x = new A(); // o1
A y = new A(); // o2
A z = x; // o1
y.f = new B() // o3

14

x

y

x,z o1.f

o2.f

o3

• X points to object Ax

• Y points to object Ay

• Assign z = x so z points to Ax

• Update y’s field to point to B

• So Ay points to B, but not Ax

14

Field Sensitivity

An analysis is field-sensitive if its fields are distinctly represented in the
solution. Otherwise, an analysis is field insensitive.

• Not distinguishing fields may decrease precision and increase cost

• But the interaction with other dimensions of precision is not clear

• More evaluation is needed

15

• An analysis is field-sensitive if it represents fields in an object distinctly. Otherwise

it is field-insensitive.

• A study (co-authored by Dr. Ryder) found that a field-insensitive analysis decreases

precision (expected) but also increases cost

• So using field-sensitive analyses seems to be better

• But the interaction with other dimensions of precision is not clear

• More evaluation is needed

15

Example: Field Insensitive Analysis

class A {
public B f1;
public C f2;

}
class B {}
class C { public D f; }
class D {}

A x = new A(); // o1
x.f1 = new B(); // o2
x.f2 = new C(); // o3
x.f2.f = new D(); // o4

16

o1x o2o2,o3

f1f1,f2

f

o4

• X points to A

• Field x.f1 points to a new object B

• Field x.f2 points to a new object C

• But since we are field insensitive, all we know is that A points to B and C

• Now x.f1.f points to new object D

• i.e. object B should point to object D

• But we’re field insensitive, so all we know is that B and C may point to D

16

Example: Field Sensitive Analysis

class A {
public B f1;
public C f2;

}
class B {}
class C { public D f; }
class D {}

A x = new A(); // o1
x.f1 = new B(); // o2
x.f2 = new C(); // o3
x.f2.f = new D(); // o4

17

o1x

o2

o3

f1

f

o4

f2

• X points to A

• Field x.f1 points to a new object B

• Field x.f2 points to a new object C

• We’re field sensitive, so A points to two separate objects B and C

• Now x.f1.f points to new object D

• i.e. object B should point to object D

17

Reference Representation

• Generally, each reference has a unique representative

• Alternative approaches:

• One abstract reference per type

• One abstract reference per method

• Fewer references are less precise, but the analysis is more efficient

• Examples: CTA, FTA/MTA, XTA

18

• In general, each reference (i.e. variable or field) has a unique representative

• Other approaches are less precise, but improve performance

• One abstract reference per type

• One abstract reference per method

• For examples, see the call graph algorithms from the first class (Tip and Palsberg,

OOPSLA ‘00)

• Note that the other algorithms with fewer references were often too

imprecise

18

Directionality

• How does the analysis interpret assignments (p = q)?

• Symmetric (unification constraints)

• p and q have the same information after the assignment

• E.g. Steensgaard’s pointer analysis (worst case almost linear time)

• Directional (inclusion constraints)

• Information flows from q to p

• E.g. Andersen’s pointer analysis (worst case cubic time)

• Inclusion more precise than unification, but slightly more cost

19

• The final dimension is directionality

• Concerns pointer assignment statements

• The assignment can be symmetric or directional

• Symmetric (expressed as unification constraints)

• Pointers p and q have the same information after the assignment

• Similar to Steensgaard’s analysis

• Directional (expressed as inclusion constraints)

• Information flows from q to p

• Similar to Andersen’s pointer analysis

• Inclusion constraints are generally more precise than unification

• But worst case cubic time vs worst case almost linear time

• But in practice, inclusion constraints are practical and worth the extra cost

19

Example: Directionality

Unification Constraints Inclusion Constraints

p

q

o1

o2

p = q

p,q o1, o2

p

q

o1

o2

p = q

o1, o2p

q o2
20

• Consider an analysis that has partially run

• P points to o1, q points to o2

• Analysis sees the assignment p – q

• Unification constraint will take the union of the two points-to sets

• So p and q may both point to o1 and o2

• But the inclusion constraint is different

• Information from q flows to p, but q remains constant

• q’s points-to set is still o2

• But now p may point to o1 or o2

• p’s set “includes” q’s set

20

Open Issues

• Reflection

• Native methods

• Exceptions

• Dynamic class loading

• Incomplete programs

• Benchmarks

21

• There are still open issues that analyses must address

• We’ve already seen some of these come up before

• Reflection: create objects, call methods, access fields at runtime without

knowing types at compile time

• Native methods: Java calls C code, analyzer needs to account for whatever

C could do

• Exceptions: Affects the control flow of a program

• Dynamic class loading: Basically eval is evil

• Incomplete programs: If you don’t have access to the library to analyze

• Benchmarks: Need good benchmarks for evaluating different analyses, to

validate them and better understand trade-offs

• Note that Averroes is one approach for handling incomplete programs

21

Conclusions

• Different dimensions affect the precision and cost of an analysis

• Challenge: picking the right analysis for a specific application, and making the
appropriate precision/cost trade-off

• Observations:

• OO programs usually have many small methods, and method calls are primary
control flow structure

• Context sensitivity probably more useful than flow sensitivity

• Inclusion constraints more precise than unification, and still practical

• No single analysis works for all applications

22

• We’ve seen how different dimensions can affect the precision and cost of an

analysis

• The challenge is to pick the right analysis and trade-offs for a specific application

• What is the required precision? How much performance cost can you

handle?

• There are some general observations

• OO code seems to have many small methods

• Control flow is basically done by methods calling each other

• So context sensitivity seems more useful than flow sensitivity

• Inclusion constraints are more precise than unification constraints, and

worth the extra cost

• The important point is that no single analysis works for all applications

22

Discussion

• Some of the approaches seem to be “obviously” better than others.
Are there cases where this might not be the case?

• Not all of the dimensions are binary. Could we use some hybrid
approach?

• E.g. part of an analysis is flow sensitive, the rest is flow insensitive

• What are other dimensions of precision in a reference analysis?

23

• This is a paper from 13 years ago, so programs and hardware have changed

• Will some approaches which were too expensive in 2003 be feasible in

2016?

• Paper didn’t seem to find flow sensitivity to be very practical, but how

about now?

• Some of the dimensions presented are pretty binary, but others aren’t

• Does it make sense to take some hybrid approaches?

• E.g. part of an analysis is flow sensitive, another part is flow insensitive

• What would this look like?

• Are there any other dimensions of precision we could consider?

23

