
The Flix Language
Magnus Madsen, MingMingMingMing----Ho YeeHo YeeHo YeeHo Yee, Ondřej Lhoták

University of Waterloo

March 4, 2016

• Today I’m going to be talking about the Flix language.

• Flix is a project that Magnus, Ondřej, and I have been working on for some time.

• Our paper was (conditionally) accepted at PLDI.

• Conditionally, because we have to work on revisions.

• We’re not ready to share the draft yet, because we want to finish our revisions.

1

Flix is a declarative language for specifying and

solving fixed-point computations on lattices.

Flix is a declarative language for specifying and

solving static program analyses.

What is Flix?

Flix is inspired by Datalog, but supports lattices and

functions.

• Flix is a declarative language for specifying and solving fixed-point computations on lattices.

• This is really specific, but the main use case is for writing static program analyses.

• We want the language to be declarative. This will make it much easier to write static analyses.

• If you write your analyzer in C++, it can be very complicated and difficult to understand.

• Our main inspiration is Datalog, but Flix supports user-defined lattices and functions.

2

What is Datalog?

Datalog is similar to the relational algebra, but is
more expressive.

Every Datalog program terminates and has a least

fixed point.

• At a very high level, Datalog is similar to the relational algebra, but is more expressive.

• Like SQL + recursion

• General idea: start with “database” of initial facts, and infer new facts with rules.

• Nice properties about Datalog that we want to ensure in Flix:

• Semantics guarantee that every program terminates and has a least fixed point

3

Example: Transitive Closure (1/2)

// Rules
Path(x, y) :- Edge(x, y).
Path(x, z) :- Path(x, y), Edge(y, z).

// Facts
Edge(1, 2).
Edge(2, 3).
Edge(3, 4).
Edge(5, 6).

Head Body

1

2

3

4

5

6

• Common example Datalog program

• Computes the transitive closure (i.e. reachability) of a graph.

• Here, Path and Edge are relations. We start with some known edges, and want to compute all the paths.

• In a Datalog program, we use rules to infer new facts.

• If the body of a rule is true, then the head must also be true.

• “If Edge(x, y) holds, then so must Path(x, y)”

• “If Path(x, y) and Edge(y, z) hold, then so must Path(x, z)”

• Here we explicitly list out the initial facts. In this case, the graph has four edges.

• Order doesn’t matter, so I can list the facts after the rules.

4

Example: Transitive Closure (2/2)
Edge(1, 2). Edge(2, 3). Edge(3, 4). Edge(5, 6).

Path(x, y) :- Edge(x, y).

Path(x, z) :- Path(x, y), Edge(y, z).

Solution:

Edge(1, 2), Edge(2, 3), Edge(3, 4), Edge(5, 6)

Path(1, 2), Path(2, 3), Path(3, 4), Path(5, 6)

Path(1, 3), Path(2, 4)

Path(1, 4)

• The solution is the minimal set of facts that satisfies a Datalog program.

• This includes the initial facts (e.g. edges).

• Solution:

• Start with the initial facts (edges)

• First rule is straightforward; edges are also paths

• We look at the existing facts and combine paths and edges to create new paths

• In this example solution, if we removed or added anything, it would no longer be a solution.

• Remove a fact and we don’t satisfy the program. Add a fact and it’s no longer minimal.

5

Example: Points-to Analysis
// v1 = new …
VarPointsTo(v1, h1) :- New(v1, h1).

// v1 = v2
VarPointsTo(v1, h2) :- Assign(v1, v2),

VarPointsTo(v2, h2).

// v1 = v2.f
VarPointsTo(v1, h2) :- Load(v1, v2, f),

VarPointsTo(v2, h1),
HeapPointsTo(h1, f, h2).

// v1.f = v2
HeapPointsTo(h1, f, h2) :- Store(v1, f, v2),

VarPointsTo(v1, h1),
VarPointsTo(v2, h2).

• This is an example of a more realistic Datalog program: a points-to analysis.

• The interesting point about this example is the mutual recursion in the third and fourth rules.

• Writing this out in Datalog is nice, but writing it in an imperative language is not so nice.

6

Limitations of Datalog

• No lattices

• No functions

• Poor interoperability

Flix addresses these limitations.

• The declarative nature of Datalog is a significant advantage.

• But Datalog has some limitations. It only allows constraints on relations. Thus:

• No lattices

• No functions

• It is possible to work around some of these (e.g. representing a lattice as a powerset, explicitly tabulating a

function).

• But this is slow, cumbersome, and sometimes not even possible (e.g. function with infinite domain,

lattice with infinite domain (constant propagation)).

• An unrelated limitation (that won’t really be discussed today): poor interoperability with other tools

• The goal of Flix is to address these limitations.

7

Example: Parity Analysis (1/4)
enum Parity {

case Top,
case Even, case Odd,

case Bot
}

fn leq(e1: Parity, e2: Parity): Bool =
match (e1, e2) with {
case (Bot, _) => true
case (Even, Even) => true
case (Odd, Odd) => true
case (_, Top) => true
case _ => false

}

fn sum(e1: Parity, e2: Parity): Parity = …

let Parity<> = (Bot, Top, leq, lub, glb);

Top

Bot

Even Odd

• Example: parity analysis implemented in Flix

• Example is simplified; some details are omitted and syntax changed.

• The Flix language has two components:

• A small, pure, functional language with Scala-like syntax

• A logic language for expressing constraints with Datalog-like syntax

• The enum defines the elements of the parity lattice

• We then define the lattice operations (leq, lub, glb)

• We can also define other functions:

• A function that sums two parity elements (E+E = E, etc.).

• Finally, we declare a lattice type (taking an enum, lattice operations, top, bot)

8

Example: Parity Analysis (2/4)

lat A(a: Int, b: Parity<>);

A(1, Even).
A(2, Odd).
A(3, Top).
A(4, x) :- A(1, x).

Solution:

A(1, Even), A(2, Odd), A(3, Top)

A(4, Even)

• Facts and rules are similar to Datalog.

• Facts are explicitly listed in the Flix program.

• But they come from somewhere else, e.g. run the source code through a phase that extracts this

information.

• Here, A is a lattice and not a relation (as it would be in Datalog).

• Intuitively, it is a map lattice from integers (“identifiers”) to parity elements.

• Note that variable “b” is a “Parity<>”, which means we want to apply lattice semantics.

• “A(1, Even)“ means “variable/expression/statement 1 has even parity.”

• The rule says “If 1 has parity x, then 4 must have parity x.”

• As in Datalog, a solution is the minimal set of facts that satisfy the program.

• We’ll have to tweak the definition of “minimal” to account for lattices, but first, we’ll look at

simpler examples.

• This specific solution is straightforward and not very different from Datalog.

• The main difference is that we have parity elements “Even,” “Odd,” “Top,” and “Bot” (not shown).

• This is the minimal set of facts.

• Remove a fact and we don’t satisfy the program. Add a fact and it’s not minimal.

9

B(2, Even ⊔ Odd)B(2, Top)

Example: Parity Analysis (3/4)

lat B(a: Int, b: Parity<>);

B(1, Even).
B(2, Even).
B(2, Odd).

Solution:

B(1, Even)

B(2, Even), B(2, Odd)

Can we replace B(1, Even) with B(1, Top)? No.

Top

Bot

Even Odd

• In this example, we’ll see how lattices cause Flix to differ from Datalog.

• Note how we’re assigning two different parities to “2.”

• With these three facts, we satisfy the program. But is this minimal?

• That depends on the definition of “minimal.”

• Flix’s semantics say “no, this is not minimal.” We want to actually use lattices here.

• We need to “compress” the two facts.

• In the declaration, we used “Parity<>” instead of “Parity” to say that we want to compress elements here.

• We don’t want to compress “B(1, Even)” with “B(2, Even)” because we wrote “Int” and not “Int<>”.

• Even and Odd are both elements of the parity lattice. So take the least upper bound to get Top.

• “2 is Top” satisfies both “2 is Even” and “2 is Odd.”

• Can we replace “B(1, Even)” with “B(1, Top)”? It satisfies the fact.

• But it isn’t minimal, because “B(1, Even)” is more precise, since Even ⊑ Top.

10

Example: Parity Analysis (4/4)

lat C(a: Int, b: Parity<>);

C(1, Even).
C(2, Odd).
C(3, sum(x, y)) :- C(1, x), C(2, y).
C(1, Odd).

Solution:

C(1, Even), C(2, Odd)

C(3, Odd)

C(1, Odd)

C(3, Top)

Top

Bot

Even Odd

C(1, Even ⊔ Odd)C(1, Top)

C(3, Odd ⊔ Top)C(3, Top)

• Here’s our final example.

• First step is easy: 1 is Even and 2 is Odd.

• To evaluate the rule, we have to call the sum function.

• If 1 has parity x and 2 has parity y, then the parity of 3 must be sum(x, y).

• In this case, we conclude that 3 is Odd.

• Now we see that 1 is also Odd. As before, we need to take the join of Even and Odd, to conclude that 1 is

Top.

• This changes our facts, so we have to re-evaluate the rule, and conclude that 3 is Top.

• Finally, we take the join of Odd and Top to conclude that 3 is Top.

• Note that I chose this order of evaluation. Any other order will return the same answer.
• We have a model-theoretic semantics for Flix, and it’s in our paper

• We’re working on a fixed-point semantics

• We have an implementation (but not a proof of correctness)

11

Implementation
About 9.5 KLOC of Scala code.

http://cloc.sourceforge.net v 1.53 T=0.5 s (158.0 files/s, 38214.0 lines/s)

Language files blank comment code

Scala 69 2659 5668 9503

Javascript 7 140 315 773

HTML 1 7 0 32

CSS 2 0 8 2

SUM: 79 2806 5991 10310

• Our implementation language is Scala

• We can take advantage of nice language features (immutability, pattern matching, Scala’s standard

library, etc.)

• Being JVM-based is also nice, as it makes interop easier.

• Currently we have roughly 9.5 KLOC (and growing).

• This number excludes blanks, comments, and tests.

• The JS/HTML/CSS is our browser-based debugger.

12

13

• The bulk of the work started in September 2015.

• Everything before that is old, prototype code that’s been thrown away.

• Note that the commits and diffs are inflated, due to refactoring (moving files).

14

Architecture: Front-End

ParsedAst

WeededAst

ResolvedAst

TypedAst

SimplifiedAst

• How many ASTs do we have? At least five.

• There’s one more AST, but it’s on the next slide because 1) it doesn’t fit here, and 2) it’s in the

back-end.

• Because we want our ASTs to be immutable, the front-end generates a new AST after each phase.

• We also don’t want one giant AST that we repeatedly process.

• Standard phases: parsing, weeding, name resolution, and type-checking.

• Final phase creates the SimplifiedAst, which is designed to make code generation easier

• Currently we desguar pattern matches.

• Later we’ll be doing more things, such as rewriting and optimizations.

15

Architecture: Back-End

JVM

Bytecode

Codegen

Solver

Interpreter

SimplifiedAst

ExecutableAst

• The final phase creates the ExecutableAst, which is consumed by the solver and interpreter.

• We copy lists over to arrays, to improve run-time performance.

• The ExecutableAst also keeps track of performance data.

• The solver is where most of the execution takes place.

• This is where the logic language (rules and constraints) is processed, and new facts are generated.

• When a function needs to be evaluated, the solver calls the interpreter, which then returns the

result.

• Lattice operations or other user-defined functions (e.g. sum).

• There is also a code generator, that takes functions from the SimplifiedAst and generates JVM bytecode.

• This is still in progress – eventually we want the solver to call bytecode functions instead of the

interpreter.

• The idea is to keep an interpreter for prototyping/debugging, and a code generator for

performance.

• My main responsibility has been the interpreter and code generator.

• Though sometimes other things come up.

16

Current and Future Work

Performance

• Code generation

• Optimizations (Luqman Aden)

Safety and Verification

• Integration with Leon (Billy Jin)

Negation

• There’s three main directions we’re working on or interested in.

• Performance will always be worked on

• No one will use Flix if our performance is terrible

• Approaches: code generation for the functional language (current WIP), code generation for the

logic language, general compiler optimizations

• Luqman Aden, an undergraduate, will be joining us in the spring term to work on optimizations

• Safety and Verification

• Every Datalog program terminates and computes the correct answer

• We want the same guarantee with Flix

• Flix requires certain properties to hold, e.g. every lattice is actually a lattice

• We want to automatically verify these properties

• Billy Jin, an undergraduate, is currently working on integrating Flix with Leon

• Leon is an automated system for verifying functional Scala programs

• http://leon.epfl.ch/

• Negation

• In contrast to the other two, this is more theoretical

• Pure Datalog doesn’t support negation, but there are some Datalog extensions that do

• How can we extend Flix to support negation?

17

Summary

Flix is a declarative language for solving fixed-point
computations on lattices.

Paper: to appear at PLDI 2016.

Future work: performance, safety, and negation.

18

