The Flix Language

Magnus Madsen, Ming-Ho Yee, Ondrej Lhotak
University of Waterloo

March 4, 2016

* Today I'm going to be talking about the Flix language.
* Flixis a project that Magnus, Ondrej, and | have been working on for some time.
* Our paper was (conditionally) accepted at PLDI.
* Conditionally, because we have to work on revisions.
* We're not ready to share the draft yet, because we want to finish our revisions.

What is Flix?

Flix is a declarative language for specifying and
solving static program analyses.

Flix is inspired by Datalog, but supports lattices and
functions.

Ming-Ho Yee
THE FLIX LANGUAGE

* Flixis a declarative language for specifying and solving fixed-point computations on lattices.
* This s really specific, but the main use case is for writing static program analyses.
¢ We want the language to be declarative. This will make it much easier to write static analyses.
e If you write your analyzer in C++, it can be very complicated and difficult to understand.
¢ Our main inspiration is Datalog, but Flix supports user-defined lattices and functions.

What is Datalog?

Datalog is similar to the relational algebra, but is
more expressive.

Every Datalog program terminates and has a least
fixed point.

Ming-Ho Yee
THE FLIX LANGUAGE

¢ Ata very high level, Datalog is similar to the relational algebra, but is more expressive.
e Like SQL + recursion

¢ General idea: start with “database” of initial facts, and infer new facts with rules.

* Nice properties about Datalog that we want to ensure in Flix:
¢ Semantics guarantee that every program terminates and has a least fixed point

Example: Transitive Closure (1/2)

Path(x, y) :- Edge(x, vy).
Path(x, z) :- Path(x, y), Edge(y, z).
N J

Y
Head Body

Edge(1, 2).
Edge(2, 3).
Edge(3, 4).
Edge(5, 6).

Ming-Ho Yee
THE FLIX LANGUAGE

Common example Datalog program
* Computes the transitive closure (i.e. reachability) of a graph.
Here, Path and Edge are relations. We start with some known edges, and want to compute all the paths.
In a Datalog program, we use rules to infer new facts.
If the body of a rule is true, then the head must also be true.
* “If Edge(x, y) holds, then so must Path(x, y)”
e “If Path(x, y) and Edge(y, z) hold, then so must Path(x, z)”
Here we explicitly list out the initial facts. In this case, the graph has four edges.
Order doesn’t matter, so | can list the facts after the rules.

Example: Transitive Closure (2/2)
Edge(1, 2). Edge(2, 3). Edge(3, 4). Edge(5, 6).

Path(x, y) :- Edge(x, y).
Path(x, z) :- Path(x, y), Edge(y, z).

Solution:

Edge(1, 2), Edge(2, 3), Edge(3, 4), Edge(5, 6)
Path(1, 2), Path(2, 3), Path(3, 4), Path(5, 6)
Path(1, 3), Path(2, 4)

Path(1, 4)

Ming-Ho Yee
THE FLIX LANGUAGE

* The solution is the minimal set of facts that satisfies a Datalog program.
* Thisincludes the initial facts (e.g. edges).
* Solution:
e Start with the initial facts (edges)
e Firstrule is straightforward; edges are also paths
* We look at the existing facts and combine paths and edges to create new paths
¢ Inthis example solution, if we removed or added anything, it would no longer be a solution.
* Remove a fact and we don’t satisfy the program. Add a fact and it’s no longer minimal.

Example: Points-to Analysis

VarPointsTo(vl, hl) :- New(vl, hl).

VarPointsTo(vl, h2) :- Assign(vl, v2),
VarPointsTo(v2, h2).

VarPointsTo(vl, h2) :- Load(vl, v2, f),
VarPointsTo(v2, hl),

HeapPointsTo(hl, f, h2).

:- Store(vi, f, v2),
VarPointsTo(vl, hl),
VarPointsTo(v2, h2).

HeapPointsTo(h1l,

Ming-Ho Yee
THE FLIX LANGUAGE

¢ Thisis an example of a more realistic Datalog program: a points-to analysis.
* Theinteresting point about this example is the mutual recursion in the third and fourth rules.
e Writing this out in Datalog is nice, but writing it in an imperative language is not so nice.

Limitations of Datalog

* No lattices
* No functions

* Poor interoperability

Flix addresses these limitations.

Ming-Ho Yee
THE FLIX LANGUAGE

The declarative nature of Datalog is a significant advantage.
But Datalog has some limitations. It only allows constraints on relations. Thus:
* No lattices
* No functions
It is possible to work around some of these (e.g. representing a lattice as a powerset, explicitly tabulating a
function).
¢ Butthisis slow, cumbersome, and sometimes not even possible (e.g. function with infinite domain,
lattice with infinite domain (constant propagation)).
An unrelated limitation (that won’t really be discussed today): poor interoperability with other tools
The goal of Flix is to address these limitations.

Example: Parity Analysis (1/4)

enum Parity { Top
case Top, T~
case Even, case 0dd, Even Odd
case Bot ~_ _—
} Bot

fn leq(el: Parity, e2: Parity): Bool =
match (el, e2) with {
case (Bot, _) => true
case (Even, Even) => true
case (0dd, 0dd) => true
case (_, Top) => true
case _ => false
}
fn sum(el: Parity, e2: Parity): Parity = ..
let Parity<> = (Bot, Top, leq, lub, glb);

Ming-Ho Yee
THE FLIX LANGUAGE

Example: parity analysis implemented in Flix

* Example is simplified; some details are omitted and syntax changed.
The Flix language has two components:

* Asmall, pure, functional language with Scala-like syntax

* Alogic language for expressing constraints with Datalog-like syntax
The enum defines the elements of the parity lattice
We then define the lattice operations (leq, lub, glb)
We can also define other functions:

¢ A function that sums two parity elements (E+E = E, etc.).
Finally, we declare a lattice type (taking an enum, lattice operations, top, bot)

Example: Parity Analysis (2/4)

lat A(a: Int, b: Parity<>);

A(1, Even).
A(2, 0dd).
A(3, Top).
A(4, x) :- A(1, x).

Solution:
A(1, Even), A(2, 0dd), A(3, Top)
A(4, Even)

Ming-Ho Yee
THE FLIX LANGUAGE

Facts and rules are similar to Datalog.
* Facts are explicitly listed in the Flix program.
¢ Butthey come from somewhere else, e.g. run the source code through a phase that extracts this
information.
Here, A is a lattice and not a relation (as it would be in Datalog).
* Intuitively, it is a map lattice from integers (“identifiers”) to parity elements.
* Note that variable “b” is a “Parity<>", which means we want to apply lattice semantics.
* “A(1, Even)” means “variable/expression/statement 1 has even parity.”
¢ The rule says “If 1 has parity x, then 4 must have parity x.”
As in Datalog, a solution is the minimal set of facts that satisfy the program.
¢ We'll have to tweak the definition of “minimal” to account for lattices, but first, we’ll look at
simpler examples.
This specific solution is straightforward and not very different from Datalog.
* The main difference is that we have parity elements “Even,” “Odd,” “Top,” and “Bot” (not shown).
* Thisis the minimal set of facts.
* Remove a fact and we don’t satisfy the program. Add a fact and it’s not minimal.

Example: Parity Analysis (3/4)

lat B(a: Int, b: Parity<>); //jbﬁ\\
B(1, Even). Even 0dd
B(2, Even). ~.
B(2, 0dd). Bot
Solution:
B(1, Even)

J) J B(ZJ Top)

Can we replace B(1, Even) withB(1, Top)? No.

Ming-Ho Yee
THE FLIX LANGUAGE

In this example, we’'ll see how lattices cause Flix to differ from Datalog.
* Note how we're assigning two different parities to “2.”

With these three facts, we satisfy the program. But is this minimal?
* That depends on the definition of “minimal.”

Flix’s semantics say “no, this is not minimal.” We want to actually use lattices here.
* We need to “compress” the two facts.

¢ Inthe declaration, we used “Parity<>" instead of “Parity” to say that we want to compress elements here.

* We don’t want to compress “B(1, Even)” with “B(2, Even)” because we wrote “Int” and not “Int<>".
* Even and Odd are both elements of the parity lattice. So take the least upper bound to get Top.
* “2isTop” satisfies both “2 is Even” and “2 is Odd.”
Can we replace “B(1, Even)” with “B(1, Top)”? It satisfies the fact.
* Butitisn’t minimal, because “B(1, Even)” is more precise, since Even C Top.

10

Example: Parity Analysis (4/4)

lat C(a: Int, b: Parity<>); Top
T

C(1, Even). Even 0dd

C(2, 0dd). ~~

C(BJ Sum(XJ y)) .- C(l) X)J C(ZJ y) Bot

C(1, 0dd).

Solution:

t5—FEver), C(2, 0dd)
—€(35Odd)—

—€(35;—0dd)— C(1, Top)
(35— Fop)— C(3, Top)

Ming-Ho Yee
THE FLIX LANGUAGE

Here's our final example.
First step is easy: 1 is Even and 2 is Odd.
To evaluate the rule, we have to call the sum function.

e If 1 has parity x and 2 has parity y, then the parity of 3 must be sum(x, y).

¢ In this case, we conclude that 3 is Odd.
Now we see that 1 is also Odd. As before, we need to take the join of Even and Odd, to conclude that 1 is
Top.
This changes our facts, so we have to re-evaluate the rule, and conclude that 3 is Top.
Finally, we take the join of Odd and Top to conclude that 3 is Top.
Note that | chose this order of evaluation. Any other order will return the same answer.
We have a model-theoretic semantics for Flix, and it’s in our paper

* We're working on a fixed-point semantics
* We have an implementation (but not a proof of correctness)

Implementation

About 9.5 KLOC of Scala code.

http://cloc.sourceforge.net v 1.53 T=0.5 s (158.0 files/s, 38214.0 lines/s)

Javascript

Ming-Ho Yee
THE FLIX LANGUAGE

Our implementation language is Scala

We can take advantage of nice language features (immutability, pattern matching, Scala’s standard
library, etc.)
Being JVM-based is also nice, as it makes interop easier.

Currently we have roughly 9.5 KLOC (and growing).

This number excludes blanks, comments, and tests.
The JS/HTML/CSS is our browser-based debugger.

12

Fi DObugIor Yetesi -

Welcome to the Flix Debugger

Warklist (0 items)

Databasze (16,790 facls)

Memary Uzage (50 MB)

Ming-Ho Yee
THE FLIX LANGUAGE

Relations
gra

=

@
Ll
@
Lc]
o
=]
L)
o
5]
e
L

Ed

o8

13

Sep 1, 2015 - Mar 1, 2016

Contributions to 31 COMmits

', magnus-madsen |
R 710 comnmits 321 0730

426

Ming-Ho Yee
THE FLIX LANGUAGE

15 Commils =

The bulk of the work started in September 2015.

* Everything before that is old, prototype code that’s been thrown away.

Note that the commits and diffs are inflated, due to refactoring (moving files).

14

Architecture: Front-End

ParsedAst
WeededAst

ResolvedAst

TypedAst

SimplifiedAst

Ming-Ho Yee
THE FLIX LANGUAGE

¢ How many ASTs do we have? At least five.
e There’s one more AST, but it’s on the next slide because 1) it doesn’t fit here, and 2) it’s in the
back-end.
* Because we want our ASTs to be immutable, the front-end generates a new AST after each phase.
¢ We also don’t want one giant AST that we repeatedly process.
* Standard phases: parsing, weeding, name resolution, and type-checking.
* Final phase creates the SimplifiedAst, which is designed to make code generation easier
* Currently we desguar pattern matches.
* Later we'll be doing more things, such as rewriting and optimizations.

Architecture: Back-End

SimplifiedAst

ExecutableAst
Codegen

VM
Interpreter

Bytecode

Ming-Ho Yee
THE FLIX LANGUAGE

The final phase creates the ExecutableAst, which is consumed by the solver and interpreter.
* We copy lists over to arrays, to improve run-time performance.
¢ The ExecutableAst also keeps track of performance data.

The solver is where most of the execution takes place.

¢ Thisis where the logic language (rules and constraints) is processed, and new facts are generated.

* When a function needs to be evaluated, the solver calls the interpreter, which then returns the
result.
* Lattice operations or other user-defined functions (e.g. sum).
There is also a code generator, that takes functions from the SimplifiedAst and generates JVM bytecode.
* Thisis still in progress — eventually we want the solver to call bytecode functions instead of the
interpreter.
* Theideais to keep an interpreter for prototyping/debugging, and a code generator for
performance.
My main responsibility has been the interpreter and code generator.
* Though sometimes other things come up.

16

Current and Future Work

Performance
* Code generation
* Optimizations (Lugman Aden)

Safety and Verification
* Integration with Leon (Billy Jin)

Negation

Ming-Ho Yee
THE FLIX LANGUAGE

¢ There’s three main directions we’re working on or interested in.
* Performance will always be worked on
* No one will use Flix if our performance is terrible
* Approaches: code generation for the functional language (current WIP), code generation for the
logic language, general compiler optimizations
* Lugman Aden, an undergraduate, will be joining us in the spring term to work on optimizations
¢ Safety and Verification
* Every Datalog program terminates and computes the correct answer
¢ We want the same guarantee with Flix
* Flix requires certain properties to hold, e.g. every lattice is actually a lattice
¢ We want to automatically verify these properties
* Billy Jin, an undergraduate, is currently working on integrating Flix with Leon
* Leonis an automated system for verifying functional Scala programs
* http://leon.epfl.ch/
* Negation
* In contrast to the other two, this is more theoretical
* Pure Datalog doesn’t support negation, but there are some Datalog extensions that do
¢ How can we extend Flix to support negation?

17

Summary

Flix is a declarative language for solving fixed-point
computations on lattices.

Paper: to appear at PLDI 2016.

Future work: performance, safety, and negation.

Ming-Ho Yee
THE FLIX LANGUAGE

18

