
Surgical Precision JIT Compilers
Tiark Rompf et al. (PLDI 2014)

Presented by: Ming-Ho Yee

February 23, 2015

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 1 / 17



Introduction

JIT compilation allows many optimizations, but the process is a black box
and often unpredictable.

Goal: Turn JIT compilation into a “precision tool.”

Running program

JIT compiler

Explicit
compilation

Compile-time
computation

Result: Lancet, JIT compiler framework for Java bytecode.

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 2 / 17



Outline

Deriving Realistic Optimizing Compilers from Interpreters

Interpreter + Staging = Compiler

Compiler + Abstract Interpreter = Optimizer

JIT Macros as Extension Points

Putting Surgical JIT Facilities to Use

Program Specialization

Speculative Optimization

Just-In-Time Program Analysis

Smart Libraries and DSLs

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 3 / 17



Interpreter + Staging = Compiler

Staging: Delaying computation of expressions by generating code.

Lightweight Modular Staging (LMS), a Scala framework

Expressions of type T

Expressions of type Rep[T]

Example: Specializing a regular expression matcher.

def matcher(pattern: String, text: Rep[String]) = ...
matcher("abc*", input)

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 4 / 17



Interpreter + Staging = Compiler

A simple interpreter:

type Store = Map[String, Int]
type Val = Int
def eval(e: Exp, st: Store): Val = e match {

case Const(c) => c
case Var(x) => st(x)
case Plus(e1, e2) => eval(s1, st) + eval(e2, st)

}

Staging the interpreter:

type Store = Rep[Map[String, Int]]
type Val = Rep[Int]
def eval(e: Exp, st: Store): Val = ... // unchanged

To implement Lancet, the authors took the bytecode interpreter from the
Graal project, ported it to Scala, and then staged it with LMS.

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 5 / 17



Compiler + Abstract Interpreter = Optimizer

Idea: Combine staged interpreter (code generator) with abstract
interpreter (program analyzer).

Introduce abstract values (AbsVal[T])

Introduce mapping (evalA) from Rep[T] to AbsVal[T]

Example: Constant folding.

override def add(x: Rep[Int], y: Rep[Int]) =
(evalA(x), evalA(y)) match {

case (Const(x), Const(y)) => liftConst(x + y)
case _ => super.add(x, y)

}

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 6 / 17



JIT Macros as Extension Points

Extensions for Lancet are implemented by registering callbacks (macros).

Lancet can then call these user-defined macros, which have access to the
compiler internals.

Example: freeze evaluates its argument at JIT-compile time.

// Macro declaration
object LancetLib {

def freeze[A](x: => A): A
}

// Macro definition
object LancetMacros {
def freeze[A](f: Rep[() => A]): Rep[A] = ...

}

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 7 / 17



Program Specialization

Controlled inlining

Inlining can be a source of nondeterminism in automatic JITs.
Lancet provides directives to control inlining:

inlineAlways, inlineNonRec, inlineNever

atScope, inScope

Example:

inlineAlways {
// inline everything, but ...
atScope("^java.io.")(inlineNever) {

// ... no IO methods will be inlined
}

}

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 8 / 17



Program Specialization

Code caching and on-demand compilation

Consider specializing calc(x: Int, y: Int) for given values of x.

val cache = new WeakHashMap[Int, Int => Int]
def calcJIT(x: Int, y: Int) = {

val specialized = cache.getOrElseUpdate(x, compile(z => calc(x, z)))
specialized(y)

}

Further ways to extend calcJIT:

Implementing a custom cache eviction policy

Specializing only for “hot” values of x

Adding background compilation

Generalizing it for any two-argument function

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 9 / 17



Speculative Optimization

JIT macros allow us to convey speculation directives to Lancet.

// The condition is likely to succeed.
// Warn if profiling suggests otherwise.
if (likely(cond)) { ... } else { ... }

// Assume the condition always succeeds and compile the true branch.
// If it fails, switch to interpreted mode.
if (speculate(cond)) { ... } else { ... }

// Assume the condition changes rarely.
// If it fails, recompile the code.
if (stable(cond)) { ... } else { ... }

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 10 / 17



Speculative Optimization

Implementing deoptimization

The primitive slowpath (fastpath) triggers a switch to interpreted
(freshly-compiled) mode at the current point of execution.

// Assume the condition always succeeds and compile the true branch.
// If it fails, switch to interpreted mode.
def speculate(x: Boolean) =

if (x) true else { slowpath(); false }

Essentially, slowpath and fastpath are doing on-stack-replacement.

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 11 / 17



Speculative Optimization

Exploiting stable structure in trees or graphs

Consider implementing a dictionary with a search tree

Typically, reads dominate writes, so the tree structure is fairly stable

Compile (specialize) the lookup code for a given instance

Invalidate and recompile the lookup code as needed

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 12 / 17



Just-In-Time Program Analysis

Controlling allocation and garbage collection

GC is yet another source of nondeterminism. However, the JIT compiler
controls all memory allocation.

checkNoAlloc {
// Compiler error if heap allocation cannot be replaced by local fields

}

If no error is raised, no heap allocation occurs, so no GC is needed.

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 13 / 17



Active Libraries and Embedded DSLs

Lancet allows ordinary Scala code to use other, existing LMS-based
frameworks as backends.

Example: Delite framework for developing parallel domain-specific
languages.

Define the DSL using Delite operators. Then Delite will generate
optimized code for the target language (e.g. Scala, C++, CUDA).

Goal: Use Lancet and Delite to improve the performance of ordinary Scala
code.

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 14 / 17



Active Libraries and Embedded DSLs

Building active libraries

OptiML is a parallel DSL for machine learning, built on top of Delite.

Performance speedups of an OptiML application, using:

Pure Scala version of OptiML

Pure Scala version of OptiML with Lancet macros that invoke Delite
methods

Stand-alone Delite

Cores: 1 2 4 8

k-Means Clustering
Scala library 1.00 1.37 1.50 1.83
Lancet-Delite 4.92 8.82 17.10 24.00
Delite 5.17 10.03 19.81 24.78

We get performance competitive with compiled DSLs, but the readability
of ordinary Scala code.

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 15 / 17



Active Libraries and Embedded DSLs
Accelerating existing libraries

Now we use Lancet and Delite to transparently optimize existing Java
bytecode programs.

def nameScore(names: Array[String]) = {
val scores = names.zipWithIndex map { case (a, i) =>

val score = a.map(c => c - 64).reduce(_+_)
((i + 1) * score).toLong

}
scores.reduce(_+_)

}

We implement macros for zipWithIndex, map, and reduce which call
Delite operators.

Cores: 1 2 4 8

Name Score
Scala library 1.00 1.71 3.08 4.36
Lancet-Delite 1.92 3.15 6.54 9.67

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 16 / 17



Conclusion

Lancet, a JIT compiler framework, allows the running program to control
the compilation process.

Lancet and the program can call into each other, enabling:

Program specialization

Speculative optimization

Just-in-time program analysis

Smart libraries

Presented by: Ming-Ho Yee Surgical Precision JIT Compilers February 23, 2015 17 / 17


	Introduction
	Deriving Realistic Compilers from Interpreters
	Putting Surgical JIT Facilities to Use
	Conclusion

